Properties

Label 2.0.19.1-361.1-CMa1
Base field \(\Q(\sqrt{-19}) \)
Conductor norm \( 361 \)
CM yes (\(-19\))
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 5 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([5, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^3-38{x}+90\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([0,0]),K([1,0]),K([-38,0]),K([90,0])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-38,0]),Polrev([90,0])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![0,0],K![1,0],K![-38,0],K![90,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(0 : 9 : 1\right)$$0.18129167403579927415788154138376329986$$\infty$
$\left(-\frac{4}{25} a + \frac{59}{25} : -\frac{57}{125} a - \frac{528}{125} : 1\right)$$1.2690417182505949191051707896863430990$$\infty$

Invariants

Conductor: $\frak{N}$ = \((19)\) = \((-2a+1)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 361 \) = \(19^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $6859$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((6859)\) = \((-2a+1)^{6}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 47045881 \) = \(19^{6}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -884736 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z[(1+\sqrt{-19})/2]\)    (complex multiplication)
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[(1+\sqrt{-19})/2]\)   
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{U}(1)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 2 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(2\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.15611668760483685923672674998964392243 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.624466750419347436946906999958575689720 \)
Global period: $\Omega(E/K)$ \( 4.0287030500025882741147230622254799474 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.3086482477578043057816112437958900992 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.308648248 \approx L^{(2)}(E/K,1)/2! & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 4.028703 \cdot 0.624467 \cdot 4 } { {1^2 \cdot 4.358899} } \\ & \approx 2.308648248 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2a+1)\) \(19\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(19\) 19B.1.17[2]

For all other primes \(p\), the image is a split Cartan subgroup if \(\left(\frac{ -19 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -19 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 361.1-CMa consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 361.a1
\(\Q\) 361.a2