Base field \(\Q(\sqrt{-11}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(23 a - 47 : 160 a + 210 : 1\right)$ | $0.45952147546897510791938400910198663249$ | $\infty$ |
| $\left(\frac{99}{4} a - \frac{57}{4} : -\frac{23}{4} a + \frac{297}{8} : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((-60a+30)\) | = | \((-a)\cdot(a-1)\cdot(2)\cdot(-a-1)\cdot(a-2)\cdot(-2a+1)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 9900 \) | = | \(3\cdot3\cdot4\cdot5\cdot5\cdot11\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-27627151500a-462854322000$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-27627151500a-462854322000)\) | = | \((-a)^{2}\cdot(a-1)^{32}\cdot(2)^{2}\cdot(-a-1)^{3}\cdot(a-2)^{4}\cdot(-2a+1)\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 229311248370415323750000 \) | = | \(3^{2}\cdot3^{32}\cdot4^{2}\cdot5^{3}\cdot5^{4}\cdot11\) |
|
| |||||
| j-invariant: | $j$ | = | \( \frac{113965227211686780677543}{50958055193425627500} a + \frac{65729950987964542995631}{16986018397808542500} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.45952147546897510791938400910198663249 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.919042950937950215838768018203973264980 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 0.290729869681611935073465455813680552240 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 256 \) = \(2\cdot2^{5}\cdot2\cdot1\cdot2\cdot1\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 5.1559547045052425364452369665353752102 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}5.155954705 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.290730 \cdot 0.919043 \cdot 256 } { {2^2 \cdot 3.316625} } \\ & \approx 5.155954705 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 6 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-a)\) | \(3\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
| \((a-1)\) | \(3\) | \(32\) | \(I_{32}\) | Split multiplicative | \(-1\) | \(1\) | \(32\) | \(32\) |
| \((2)\) | \(4\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
| \((-a-1)\) | \(5\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
| \((a-2)\) | \(5\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
| \((-2a+1)\) | \(11\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
9900.5-k
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.