Learn more

Refine search


Results (1-50 of 56589 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9.1-CMa1 9.1-CMa \(\Q(\sqrt{-11}) \) \( 3^{2} \) $0$ $\Z/3\Z$ $-11$ $1$ $6.657786957$ 0.446088510 \( -32768 \) \( \bigl[0\) , \( a\) , \( 1\) , \( a - 3\) , \( -2\bigr] \) ${y}^2+{y}={x}^{3}+a{x}^{2}+\left(a-3\right){x}-2$
9.3-CMa1 9.3-CMa \(\Q(\sqrt{-11}) \) \( 3^{2} \) $0$ $\Z/3\Z$ $-11$ $1$ $6.657786957$ 0.446088510 \( -32768 \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -a - 2\) , \( -2\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-a-2\right){x}-2$
11.1-a1 11.1-a \(\Q(\sqrt{-11}) \) \( 11 \) $0$ $\mathsf{trivial}$ $1$ $0.370308724$ 0.446609125 \( -\frac{52893159101157376}{11} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -7820\) , \( -263580\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}-7820{x}-263580$
11.1-a2 11.1-a \(\Q(\sqrt{-11}) \) \( 11 \) $0$ $\Z/5\Z$ $1$ $1.851543623$ 0.446609125 \( -\frac{122023936}{161051} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -10\) , \( -20\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}-10{x}-20$
11.1-a3 11.1-a \(\Q(\sqrt{-11}) \) \( 11 \) $0$ $\Z/5\Z$ $1$ $9.257718117$ 0.446609125 \( -\frac{4096}{11} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}$
27.2-a1 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $2.289634401$ 0.690350747 \( -\frac{349209575}{59049} a - \frac{298597801}{19683} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -7 a + 15\) , \( -3 a - 13\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-7a+15\right){x}-3a-13$
27.2-a2 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $2.289634401$ 0.690350747 \( \frac{349209575}{59049} a - \frac{1245002978}{59049} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -4 a + 15\) , \( 8 a + 3\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4a+15\right){x}+8a+3$
27.2-a3 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/4\Z$ $1$ $4.579268803$ 0.690350747 \( -\frac{77935}{243} a - \frac{11594}{81} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -2 a\) , \( -2 a + 2\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}-2a{x}-2a+2$
27.2-a4 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/4\Z$ $1$ $4.579268803$ 0.690350747 \( \frac{77935}{243} a - \frac{112717}{243} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( a\) , \( -a + 3\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}-a+3$
27.2-a5 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( -\frac{2927543402641}{3486784401} a + \frac{1635099303025}{3486784401} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -19 a + 15\) , \( 50 a - 96\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-19a+15\right){x}+50a-96$
27.2-a6 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( \frac{2927543402641}{3486784401} a - \frac{430814699872}{1162261467} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( 3 a + 30\) , \( 51 a - 94\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(3a+30\right){x}+51a-94$
27.2-a7 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( -\frac{54238838797}{243} a + \frac{90191354077}{243} \) \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -69 a + 255\) , \( 642 a + 522\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-69a+255\right){x}+642a+522$
27.2-a8 27.2-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -97 a + 240\) , \( -381 a - 1012\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-97a+240\right){x}-381a-1012$
27.3-a1 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $2.289634401$ 0.690350747 \( -\frac{349209575}{59049} a - \frac{298597801}{19683} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 5 a + 11\) , \( -4 a + 22\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(5a+11\right){x}-4a+22$
27.3-a2 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $2.289634401$ 0.690350747 \( \frac{349209575}{59049} a - \frac{1245002978}{59049} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 6 a + 7\) , \( 16 a - 34\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(6a+7\right){x}+16a-34$
27.3-a3 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/4\Z$ $1$ $4.579268803$ 0.690350747 \( -\frac{77935}{243} a - \frac{11594}{81} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 1\) , \( 3\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+{x}+3$
27.3-a4 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/4\Z$ $1$ $4.579268803$ 0.690350747 \( \frac{77935}{243} a - \frac{112717}{243} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( a - 3\) , \( -3\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-3\right){x}-3$
27.3-a5 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( -\frac{2927543402641}{3486784401} a + \frac{1635099303025}{3486784401} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -4 a + 32\) , \( -23 a - 31\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-4a+32\right){x}-23a-31$
27.3-a6 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( \frac{2927543402641}{3486784401} a - \frac{430814699872}{1162261467} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 20 a - 4\) , \( -31 a - 50\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(20a-4\right){x}-31a-50$
27.3-a7 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( -\frac{54238838797}{243} a + \frac{90191354077}{243} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 96 a + 142\) , \( 619 a - 1681\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(96a+142\right){x}+619a-1681$
27.3-a8 27.3-a \(\Q(\sqrt{-11}) \) \( 3^{3} \) $0$ $\Z/2\Z$ $1$ $1.144817200$ 0.690350747 \( \frac{54238838797}{243} a + \frac{1331574640}{9} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 70 a + 186\) , \( -573 a + 1350\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(70a+186\right){x}-573a+1350$
47.1-a1 47.1-a \(\Q(\sqrt{-11}) \) \( 47 \) $1$ $\mathsf{trivial}$ $0.037922542$ $7.280811841$ 0.665994884 \( -\frac{598016}{2209} a + \frac{430080}{2209} \) \( \bigl[0\) , \( a\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}+a{x}^{2}-{x}$
47.2-a1 47.2-a \(\Q(\sqrt{-11}) \) \( 47 \) $1$ $\mathsf{trivial}$ $0.037922542$ $7.280811841$ 0.665994884 \( \frac{598016}{2209} a - \frac{167936}{2209} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}-{x}$
89.1-a1 89.1-a \(\Q(\sqrt{-11}) \) \( 89 \) $0$ $\Z/2\Z$ $1$ $4.747780797$ 1.431509771 \( -\frac{842425675}{7921} a - \frac{307621662}{7921} \) \( \bigl[a\) , \( a\) , \( 0\) , \( 4\) , \( 5 a - 3\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}+4{x}+5a-3$
89.1-a2 89.1-a \(\Q(\sqrt{-11}) \) \( 89 \) $0$ $\Z/2\Z$ $1$ $9.495561594$ 1.431509771 \( \frac{4885}{89} a + \frac{99249}{89} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+a{x}^{2}-{x}$
89.2-a1 89.2-a \(\Q(\sqrt{-11}) \) \( 89 \) $0$ $\Z/2\Z$ $1$ $4.747780797$ 1.431509771 \( \frac{842425675}{7921} a - \frac{1150047337}{7921} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( a + 2\) , \( 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a+2\right){x}+1$
89.2-a2 89.2-a \(\Q(\sqrt{-11}) \) \( 89 \) $0$ $\Z/2\Z$ $1$ $9.495561594$ 1.431509771 \( -\frac{4885}{89} a + \frac{104134}{89} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( a - 3\) , \( -1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(a-3\right){x}-1$
92.1-a1 92.1-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 23 \) $0$ $\Z/3\Z$ $1$ $8.238724756$ 1.104030657 \( \frac{36793}{92} a + \frac{210163}{92} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -a - 1\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(-a-1\right){x}$
92.1-a2 92.1-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $0.915413861$ 1.104030657 \( -\frac{34638770834904571}{3602305322926} a + \frac{53455263008615953}{7204610645852} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 24 a - 96\) , \( 116 a - 322\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(24a-96\right){x}+116a-322$
92.1-a3 92.1-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 23 \) $0$ $\Z/3\Z$ $1$ $2.746241585$ 1.104030657 \( \frac{4146024701}{389344} a - \frac{1186600043}{778688} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 4 a + 4\) , \( 4 a - 18\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(4a+4\right){x}+4a-18$
92.2-a1 92.2-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 23 \) $0$ $\Z/3\Z$ $1$ $8.238724756$ 1.104030657 \( -\frac{36793}{92} a + \frac{61739}{23} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -1\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}-{x}$
92.2-a2 92.2-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $0.915413861$ 1.104030657 \( \frac{34638770834904571}{3602305322926} a - \frac{15822278661193189}{7204610645852} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -25 a - 71\) , \( -116 a - 206\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-25a-71\right){x}-116a-206$
92.2-a3 92.2-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 23 \) $0$ $\Z/3\Z$ $1$ $2.746241585$ 1.104030657 \( -\frac{4146024701}{389344} a + \frac{7105449359}{778688} \) \( \bigl[a\) , \( -a + 1\) , \( 1\) , \( -5 a + 9\) , \( -4 a - 14\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-5a+9\right){x}-4a-14$
99.1-a1 99.1-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $2.452601877$ 1.478974579 \( -\frac{393194}{11} a - 1506561 \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -10 a - 17\) , \( 41 a + 6\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-10a-17\right){x}+41a+6$
99.1-a2 99.1-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $4.905203755$ 1.478974579 \( -\frac{7136}{11} a + \frac{11895}{11} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -2\) , \( a\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a-1\right){x}^{2}-2{x}+a$
99.2-a1 99.2-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.025585977$ 0.309225806 \( \frac{9090072503}{5845851} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 44\) , \( 55\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+44{x}+55$
99.2-a2 99.2-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $2.051171954$ 0.309225806 \( \frac{169112377}{88209} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -11\) , \( 0\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-11{x}$
99.2-a3 99.2-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/4\Z$ $1$ $4.102343908$ 0.309225806 \( \frac{30664297}{297} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -6\) , \( -9\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-6{x}-9$
99.2-a4 99.2-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $0.512792988$ 0.309225806 \( -\frac{450360153235512010}{3106724901291} a + \frac{211862156595042847}{1035574967097} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -50 a + 509\) , \( 2414 a + 58\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(-50a+509\right){x}+2414a+58$
99.2-a5 99.2-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $0.512792988$ 0.309225806 \( \frac{450360153235512010}{3106724901291} a + \frac{185226316549616531}{3106724901291} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( 50 a + 459\) , \( -2414 a + 2472\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(50a+459\right){x}-2414a+2472$
99.2-a6 99.2-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/4\Z$ $1$ $1.025585977$ 0.309225806 \( \frac{347873904937}{395307} \) \( \bigl[1\) , \( 1\) , \( 0\) , \( -146\) , \( 621\bigr] \) ${y}^2+{x}{y}={x}^{3}+{x}^{2}-146{x}+621$
99.3-a1 99.3-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $2.452601877$ 1.478974579 \( \frac{393194}{11} a - \frac{16965365}{11} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 12 a - 27\) , \( -30 a + 20\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(12a-27\right){x}-30a+20$
99.3-a2 99.3-a \(\Q(\sqrt{-11}) \) \( 3^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $4.905203755$ 1.478974579 \( \frac{7136}{11} a + \frac{4759}{11} \) \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 2 a - 2\) , \( -1\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(2a-2\right){x}-1$
108.1-a1 108.1-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\mathsf{trivial}$ $0.392228249$ $0.681207479$ 0.966725513 \( \frac{116453655937}{8} a - 37004774076 \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 443 a - 974\) , \( 6754 a - 9107\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(443a-974\right){x}+6754a-9107$
108.1-a2 108.1-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/3\Z$ $0.130742749$ $2.043622437$ 0.966725513 \( -\frac{488881}{256} a + \frac{1381533}{512} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 3 a - 14\) , \( 2 a - 11\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(3a-14\right){x}+2a-11$
108.1-a3 108.1-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/3\Z$ $0.392228249$ $6.130867313$ 0.966725513 \( -\frac{21349}{4} a + \frac{328857}{8} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -2 a + 1\) , \( a - 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+1\right){x}+a-1$
108.1-a4 108.1-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/3\Z$ $1.176684747$ $6.130867313$ 0.966725513 \( \frac{21493}{2} a + 66744 \) \( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -2 a + 1\) , \( 3\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-2a+1\right){x}+3$
108.1-b1 108.1-b \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\mathsf{trivial}$ $1$ $2.453117830$ 1.479285710 \( -13361111 a - \frac{6886077}{2} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( -21 a + 30\) , \( 6 a - 81\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-21a+30\right){x}+6a-81$
108.1-b2 108.1-b \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/3\Z$ $1$ $7.359353490$ 1.479285710 \( -\frac{3637}{2} a - 1296 \) \( \bigl[a\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}$
108.1-b3 108.1-b \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 3^{3} \) $0$ $\Z/3\Z$ $1$ $7.359353490$ 1.479285710 \( \frac{1261}{4} a + \frac{11127}{8} \) \( \bigl[1\) , \( a - 1\) , \( a\) , \( -a\) , \( 1\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}-a{x}+1$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.