Base field \(\Q(\sqrt{-11}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $\frak{N}$ | = | \((9a+13)\) | = | \((a+4)^{2}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 529 \) | = | \(23^{2}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $6264a-9467$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((6264a-9467)\) | = | \((a+4)^{6}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 148035889 \) | = | \(23^{6}\) |
|
| |||||
| j-invariant: | $j$ | = | \( -32768 \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z[(1+\sqrt{-11})/2]\) (complex multiplication) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-11})/2]\) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{U}(1)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(0\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 4.8090201755188429477662378738580861994 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 1 \) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.4499741392222791524952948897493076448 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.449974139 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 4.809020 \cdot 1 \cdot 1 } { {1^2 \cdot 3.316625} } \\ & \approx 1.449974139 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((a+4)\) | \(23\) | \(1\) | \(I_0^{*}\) | Additive | \(-1\) | \(2\) | \(6\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(23\) | 23Cs.2.1 |
For all other primes \(p\), the image is a Borel subgroup if \(p=11\), a split Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has no rational isogenies other than endomorphisms. Its isogeny class 529.1-CMa consists of this curve only.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.