Base field \(\Q(\sqrt{-11}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-2 a - 1 : -2 a : 1\right)$ | $0.60480285988990531539647048294264559425$ | $\infty$ |
$\left(-1 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((72)\) | = | \((-a)^{2}\cdot(a-1)^{2}\cdot(2)^{3}\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 5184 \) | = | \(3^{2}\cdot3^{2}\cdot4^{3}\) |
| |||||
Discriminant: | $\Delta$ | = | $-241920a+511488$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-241920a+511488)\) | = | \((-a)^{3}\cdot(a-1)^{11}\cdot(2)^{8}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 313456656384 \) | = | \(3^{3}\cdot3^{11}\cdot4^{8}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{74896}{243} a + \frac{136144}{81} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.60480285988990531539647048294264559425 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 1.20960571977981063079294096588529118850 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 3.0187445122259937353064493331970091544 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 16 \) = \(2\cdot2\cdot2^{2}\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 4.4038633964997812228338738740557639938 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}4.403863396 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.018745 \cdot 1.209606 \cdot 16 } { {2^2 \cdot 3.316625} } \\ & \approx 4.403863396 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-a)\) | \(3\) | \(2\) | \(III\) | Additive | \(1\) | \(2\) | \(3\) | \(0\) |
\((a-1)\) | \(3\) | \(2\) | \(I_{5}^{*}\) | Additive | \(-1\) | \(2\) | \(11\) | \(5\) |
\((2)\) | \(4\) | \(4\) | \(I_{1}^{*}\) | Additive | \(-1\) | \(3\) | \(8\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
5184.3-i
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.