Base field \(\Q(\sqrt{-11}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(2 : -2 a + 6 : 1\right)$ | $0.43136402131061990021327510184929225185$ | $\infty$ |
| $\left(-a + 5 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((24a+192)\) | = | \((-a)\cdot(a-1)^{2}\cdot(2)^{3}\cdot(a-2)^{2}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 43200 \) | = | \(3\cdot3^{2}\cdot4^{3}\cdot5^{2}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-393984a-41472$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-393984a-41472)\) | = | \((-a)^{4}\cdot(a-1)^{6}\cdot(2)^{8}\cdot(a-2)^{3}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 483729408000 \) | = | \(3^{4}\cdot3^{6}\cdot4^{8}\cdot5^{3}\) |
|
| |||||
| j-invariant: | $j$ | = | \( \frac{436976}{81} a + \frac{352816}{81} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.43136402131061990021327510184929225185 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.862728042621239800426550203698584503700 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 2.6344638205604999987343319425456791674 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 32 \) = \(2\cdot2\cdot2^{2}\cdot2\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 5.4822621404215793547771256335187250682 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}5.482262140 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.634464 \cdot 0.862728 \cdot 32 } { {2^2 \cdot 3.316625} } \\ & \approx 5.482262140 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-a)\) | \(3\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
| \((a-1)\) | \(3\) | \(2\) | \(I_0^{*}\) | Additive | \(-1\) | \(2\) | \(6\) | \(0\) |
| \((2)\) | \(4\) | \(4\) | \(I_{1}^{*}\) | Additive | \(1\) | \(3\) | \(8\) | \(0\) |
| \((a-2)\) | \(5\) | \(2\) | \(III\) | Additive | \(-1\) | \(2\) | \(3\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
43200.9-i
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.