Properties

Label 2.0.11.1-39204.2-b1
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 39204 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([3, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-2782a-18726\right){x}-236524a-954375\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([0,1]),K([0,1]),K([-18726,-2782]),K([-954375,-236524])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([0,1]),Polrev([-18726,-2782]),Polrev([-954375,-236524])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![0,1],K![0,1],K![-18726,-2782],K![-954375,-236524]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{232}{25} a - \frac{1637}{25} : -\frac{10031}{125} a - \frac{3071}{125} : 1\right)$$0.84456702395889367518514171910959871792$$\infty$

Invariants

Conductor: $\frak{N}$ = \((66a-198)\) = \((-a)^{3}\cdot(a-1)\cdot(2)\cdot(-2a+1)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 39204 \) = \(3^{3}\cdot3\cdot4\cdot11^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-6547689456a-22449220992$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-6547689456a-22449220992)\) = \((-a)^{5}\cdot(a-1)\cdot(2)^{4}\cdot(-2a+1)^{15}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 779574762369026452224 \) = \(3^{5}\cdot3\cdot4^{4}\cdot11^{15}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{44349865310515}{7730448} a - \frac{78923474734103}{2576816} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.84456702395889367518514171910959871792 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.68913404791778735037028343821919743584 \)
Global period: $\Omega(E/K)$ \( 0.219249904754221952520280222973818535180 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 48 \)  =  \(3\cdot1\cdot2^{2}\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 5.3597980240639053072288460553086528407 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}5.359798024 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.219250 \cdot 1.689134 \cdot 48 } { {1^2 \cdot 3.316625} } \\ & \approx 5.359798024 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a)\) \(3\) \(3\) \(IV\) Additive \(1\) \(3\) \(5\) \(0\)
\((a-1)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((2)\) \(4\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-2a+1)\) \(11\) \(4\) \(I_{9}^{*}\) Additive \(-1\) \(2\) \(15\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 39204.2-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.