Properties

Label 2.0.11.1-27225.5-b2
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 27225 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+{x}^{2}+\left(24a-42\right){x}+80a-84\)
sage: E = EllipticCurve([K([1,1]),K([1,0]),K([1,0]),K([-42,24]),K([-84,80])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([1,0]),Polrev([-42,24]),Polrev([-84,80])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,0],K![1,0],K![-42,24],K![-84,80]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((165)\) = \((-a)\cdot(a-1)\cdot(-a-1)\cdot(a-2)\cdot(-2a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27225 \) = \(3\cdot3\cdot5\cdot5\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-139755a+259545)\) = \((-a)\cdot(a-1)^{3}\cdot(-a-1)^{3}\cdot(a-2)\cdot(-2a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 89685275625 \) = \(3\cdot3^{3}\cdot5^{3}\cdot5\cdot11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{84015547}{3375} a - \frac{4105442}{1125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-2 a - 3 : 4 a - 18 : 1\right)$ $\left(-\frac{2}{9} a - \frac{1}{3} : -\frac{127}{27} a - \frac{50}{9} : 1\right)$
Heights \(2.0391995734925046641927612801372850402\) \(1.7737080913251669667109457682060798264\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a - 4 : a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 3.0482654482955999076896697797841216553 \)
Period: \( 1.3810024227995198646465505737050151593 \)
Tamagawa product: \( 2 \)  =  \(1\cdot1\cdot1\cdot1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 5.0770433624856225136592855125940239549 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a-1)\) \(3\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((-a-1)\) \(5\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((a-2)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-2a+1)\) \(11\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 27225.5-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.