Properties

Label 2.0.11.1-16875.13-bc5
Base field \(\Q(\sqrt{-11}) \)
Conductor norm \( 16875 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -1, 1]))
 
gp: K = nfinit(Polrev([3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}-a{x}^{2}+\left(-17a+36\right){x}-6a+165\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([0,1]),K([36,-17]),K([165,-6])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([0,1]),Polrev([36,-17]),Polrev([165,-6])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![0,1],K![36,-17],K![165,-6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(\frac{134}{81} a - \frac{281}{81} : -\frac{3652}{729} a - \frac{8150}{729} : 1\right)$$3.1199337177737202649127702955420339361$$\infty$
$\left(-3 a + 2 : a - 1 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((75a-75)\) = \((-a)\cdot(a-1)^{2}\cdot(-a-1)^{2}\cdot(a-2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 16875 \) = \(3\cdot3^{2}\cdot5^{2}\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $1453125a-11859375$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((1453125a-11859375)\) = \((-a)\cdot(a-1)^{11}\cdot(-a-1)^{6}\cdot(a-2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 129746337890625 \) = \(3\cdot3^{11}\cdot5^{6}\cdot5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{77935}{243} a - \frac{11594}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 3.1199337177737202649127702955420339361 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 6.2398674355474405298255405910840678722 \)
Global period: $\Omega(E/K)$ \( 1.83170752131356218837520595963024794146 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 8 \)  =  \(1\cdot2\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 6.8923154328030287240346822789408358509 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 6.892315433 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1.831708 \cdot 6.239867 \cdot 8 } { {2^2 \cdot 3.316625} } \approx 6.892315433$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a-1)\) \(3\) \(2\) \(I_{5}^{*}\) Additive \(-1\) \(2\) \(11\) \(5\)
\((-a-1)\) \(5\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((a-2)\) \(5\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 5, 10 and 20.
Its isogeny class 16875.13-bc consists of curves linked by isogenies of degrees dividing 20.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.