Learn more

The results below are complete, since the LMFDB contains all Dirichlet characters with modulus at most a million

Refine search


Results (14 matches)

  displayed columns for results
Orbit label Conrey labels Modulus Conductor Order Value field Parity Real Primitive Minimal
449.a

\(\chi_{449}(1, \cdot)\)

$449$ $1$ $1$ \(\Q\) even
449.b

\(\chi_{449}(448, \cdot)\)

$449$ $449$ $2$ \(\Q\) even
449.c

\(\chi_{449}(67, \cdot)\)$,$ \(\chi_{449}(382, \cdot)\)

$449$ $449$ $4$ \(\mathbb{Q}(i)\) even
449.d

\(\chi_{449}(18, \cdot)\)$, \cdots ,$\(\chi_{449}(444, \cdot)\)

$449$ $449$ $7$ \(\Q(\zeta_{7})\) even
449.e

\(\chi_{449}(92, \cdot)\)$, \cdots ,$\(\chi_{449}(357, \cdot)\)

$449$ $449$ $8$ \(\Q(\zeta_{8})\) even
449.f

\(\chi_{449}(5, \cdot)\)$, \cdots ,$\(\chi_{449}(431, \cdot)\)

$449$ $449$ $14$ \(\Q(\zeta_{7})\) even
449.g

\(\chi_{449}(35, \cdot)\)$, \cdots ,$\(\chi_{449}(414, \cdot)\)

$449$ $449$ $16$ \(\Q(\zeta_{16})\) even
449.h

\(\chi_{449}(114, \cdot)\)$, \cdots ,$\(\chi_{449}(335, \cdot)\)

$449$ $449$ $28$ \(\Q(\zeta_{28})\) even
449.i

\(\chi_{449}(10, \cdot)\)$, \cdots ,$\(\chi_{449}(439, \cdot)\)

$449$ $449$ $32$ \(\Q(\zeta_{32})\) even
449.j

\(\chi_{449}(11, \cdot)\)$, \cdots ,$\(\chi_{449}(438, \cdot)\)

$449$ $449$ $56$ $\Q(\zeta_{56})$ even
449.k

\(\chi_{449}(24, \cdot)\)$, \cdots ,$\(\chi_{449}(425, \cdot)\)

$449$ $449$ $64$ $\Q(\zeta_{64})$ odd
449.l

\(\chi_{449}(4, \cdot)\)$, \cdots ,$\(\chi_{449}(445, \cdot)\)

$449$ $449$ $112$ $\Q(\zeta_{112})$ even
449.m

\(\chi_{449}(2, \cdot)\)$, \cdots ,$\(\chi_{449}(447, \cdot)\)

$449$ $449$ $224$ $\Q(\zeta_{224})$ even
449.n

\(\chi_{449}(3, \cdot)\)$, \cdots ,$\(\chi_{449}(446, \cdot)\)

$449$ $449$ $448$ $\Q(\zeta_{448})$ odd
  displayed columns for results