Learn more

The results below are complete, since the LMFDB contains all Dirichlet characters with modulus at most a million

Refine search


Results (1-50 of 480 matches)

Next   displayed columns for results
Orbit label Conrey labels Modulus Conductor Order Value field Parity Real Primitive Minimal
373527.a

\(\chi_{373527}(1, \cdot)\)

$373527$ $1$ $1$ \(\Q\) even
373527.b

\(\chi_{373527}(166013, \cdot)\)

$373527$ $3$ $2$ \(\Q\) odd
373527.c

\(\chi_{373527}(207514, \cdot)\)

$373527$ $77$ $2$ \(\Q\) even
373527.d

\(\chi_{373527}(120394, \cdot)\)

$373527$ $11$ $2$ \(\Q\) odd
373527.e

\(\chi_{373527}(253133, \cdot)\)

$373527$ $21$ $2$ \(\Q\) even
373527.f

\(\chi_{373527}(87121, \cdot)\)

$373527$ $7$ $2$ \(\Q\) odd
373527.g

\(\chi_{373527}(286406, \cdot)\)

$373527$ $33$ $2$ \(\Q\) even
373527.h

\(\chi_{373527}(373526, \cdot)\)

$373527$ $231$ $2$ \(\Q\) odd
373527.i

\(\chi_{373527}(6535, \cdot)\)$,$ \(\chi_{373527}(124147, \cdot)\)

$373527$ $7$ $3$ \(\mathbb{Q}(\zeta_3)\) even
373527.j

\(\chi_{373527}(124510, \cdot)\)$,$ \(\chi_{373527}(249019, \cdot)\)

$373527$ $9$ $3$ \(\mathbb{Q}(\zeta_3)\) even
373527.k

\(\chi_{373527}(131044, \cdot)\)$,$ \(\chi_{373527}(373165, \cdot)\)

$373527$ $63$ $3$ \(\mathbb{Q}(\zeta_3)\) even
373527.l

\(\chi_{373527}(248656, \cdot)\)$,$ \(\chi_{373527}(255553, \cdot)\)

$373527$ $63$ $3$ \(\mathbb{Q}(\zeta_3)\) even
373527.m

\(\chi_{373527}(40132, \cdot)\)$, \cdots ,$\(\chi_{373527}(302527, \cdot)\)

$373527$ $11$ $5$ \(\Q(\zeta_{5})\) even
373527.n

\(\chi_{373527}(4478, \cdot)\)$,$ \(\chi_{373527}(371108, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.o

\(\chi_{373527}(2419, \cdot)\)$,$ \(\chi_{373527}(369049, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.p

\(\chi_{373527}(76471, \cdot)\)$,$ \(\chi_{373527}(207877, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.q

\(\chi_{373527}(165650, \cdot)\)$,$ \(\chi_{373527}(297056, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.r

\(\chi_{373527}(161534, \cdot)\)$,$ \(\chi_{373527}(168431, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.s

\(\chi_{373527}(205096, \cdot)\)$,$ \(\chi_{373527}(211993, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.t

\(\chi_{373527}(249380, \cdot)\)$,$ \(\chi_{373527}(366992, \cdot)\)

$373527$ $231$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.u

\(\chi_{373527}(124508, \cdot)\)$,$ \(\chi_{373527}(249017, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.v

\(\chi_{373527}(211630, \cdot)\)$,$ \(\chi_{373527}(336139, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.w

\(\chi_{373527}(37388, \cdot)\)$,$ \(\chi_{373527}(161897, \cdot)\)

$373527$ $99$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.x

\(\chi_{373527}(37025, \cdot)\)$,$ \(\chi_{373527}(292940, \cdot)\)

$373527$ $231$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.y

\(\chi_{373527}(80587, \cdot)\)$,$ \(\chi_{373527}(336502, \cdot)\)

$373527$ $7$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.z

\(\chi_{373527}(362, \cdot)\)$,$ \(\chi_{373527}(242483, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.ba

\(\chi_{373527}(325489, \cdot)\)$,$ \(\chi_{373527}(332386, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.bb

\(\chi_{373527}(41141, \cdot)\)$,$ \(\chi_{373527}(48038, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bc

\(\chi_{373527}(244903, \cdot)\)$,$ \(\chi_{373527}(369412, \cdot)\)

$373527$ $99$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bd

\(\chi_{373527}(4115, \cdot)\)$,$ \(\chi_{373527}(128624, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.be

\(\chi_{373527}(128987, \cdot)\)$,$ \(\chi_{373527}(246599, \cdot)\)

$373527$ $21$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.bf

\(\chi_{373527}(126928, \cdot)\)$,$ \(\chi_{373527}(244540, \cdot)\)

$373527$ $77$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bg

\(\chi_{373527}(83368, \cdot)\)$,$ \(\chi_{373527}(200980, \cdot)\)

$373527$ $77$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.bh

\(\chi_{373527}(172547, \cdot)\)$,$ \(\chi_{373527}(290159, \cdot)\)

$373527$ $21$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bi

\(\chi_{373527}(41504, \cdot)\)$,$ \(\chi_{373527}(290522, \cdot)\)

$373527$ $9$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bj

\(\chi_{373527}(83005, \cdot)\)$,$ \(\chi_{373527}(332023, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.bk

\(\chi_{373527}(122090, \cdot)\)$,$ \(\chi_{373527}(253496, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.bl

\(\chi_{373527}(120031, \cdot)\)$,$ \(\chi_{373527}(251437, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bm

\(\chi_{373527}(117974, \cdot)\)$,$ \(\chi_{373527}(124871, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bn

\(\chi_{373527}(43922, \cdot)\)$,$ \(\chi_{373527}(286043, \cdot)\)

$373527$ $693$ $6$ \(\mathbb{Q}(\zeta_3)\) even
373527.bo

\(\chi_{373527}(87484, \cdot)\)$,$ \(\chi_{373527}(329605, \cdot)\)

$373527$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
373527.bp

\(\chi_{373527}(53362, \cdot)\)$, \cdots ,$\(\chi_{373527}(320167, \cdot)\)

$373527$ $49$ $7$ \(\Q(\zeta_{7})\) even
373527.bq

\(\chi_{373527}(71000, \cdot)\)$, \cdots ,$\(\chi_{373527}(333395, \cdot)\)

$373527$ $231$ $10$ \(\Q(\zeta_{5})\) odd
373527.br

\(\chi_{373527}(20924, \cdot)\)$, \cdots ,$\(\chi_{373527}(357407, \cdot)\)

$373527$ $33$ $10$ \(\Q(\zeta_{5})\) even
373527.bs

\(\chi_{373527}(16120, \cdot)\)$, \cdots ,$\(\chi_{373527}(352603, \cdot)\)

$373527$ $77$ $10$ \(\Q(\zeta_{5})\) odd
373527.bt

\(\chi_{373527}(132740, \cdot)\)$, \cdots ,$\(\chi_{373527}(293264, \cdot)\)

$373527$ $231$ $10$ \(\Q(\zeta_{5})\) even
373527.bu

\(\chi_{373527}(80263, \cdot)\)$, \cdots ,$\(\chi_{373527}(240787, \cdot)\)

$373527$ $11$ $10$ \(\Q(\zeta_{5})\) odd
373527.bv

\(\chi_{373527}(167383, \cdot)\)$, \cdots ,$\(\chi_{373527}(327907, \cdot)\)

$373527$ $77$ $10$ \(\Q(\zeta_{5})\) even
373527.bw

\(\chi_{373527}(45620, \cdot)\)$, \cdots ,$\(\chi_{373527}(206144, \cdot)\)

$373527$ $33$ $10$ \(\Q(\zeta_{5})\) odd
373527.bx

\(\chi_{373527}(33958, \cdot)\)$, \cdots ,$\(\chi_{373527}(339571, \cdot)\)

$373527$ $121$ $11$ \(\Q(\zeta_{11})\) even
Next   displayed columns for results