Learn more

The results below are complete, since the LMFDB contains all Dirichlet characters with modulus at most a million

Refine search


Results (1-50 of 184 matches)

Next   displayed columns for results
Orbit label Conrey labels Modulus Conductor Order Value field Parity Real Primitive Minimal
2394.a

\(\chi_{2394}(1, \cdot)\)

$2394$ $1$ $1$ \(\Q\) even
2394.b

\(\chi_{2394}(1709, \cdot)\)

$2394$ $57$ $2$ \(\Q\) even
2394.c

\(\chi_{2394}(1331, \cdot)\)

$2394$ $3$ $2$ \(\Q\) odd
2394.d

\(\chi_{2394}(685, \cdot)\)

$2394$ $7$ $2$ \(\Q\) odd
2394.e

\(\chi_{2394}(1063, \cdot)\)

$2394$ $133$ $2$ \(\Q\) even
2394.f

\(\chi_{2394}(2015, \cdot)\)

$2394$ $21$ $2$ \(\Q\) even
2394.g

\(\chi_{2394}(2393, \cdot)\)

$2394$ $399$ $2$ \(\Q\) odd
2394.h

\(\chi_{2394}(379, \cdot)\)

$2394$ $19$ $2$ \(\Q\) odd
2394.i

\(\chi_{2394}(1255, \cdot)\)$,$ \(\chi_{2394}(2167, \cdot)\)

$2394$ $63$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.j

\(\chi_{2394}(121, \cdot)\)$,$ \(\chi_{2394}(277, \cdot)\)

$2394$ $1197$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.k

\(\chi_{2394}(799, \cdot)\)$,$ \(\chi_{2394}(1597, \cdot)\)

$2394$ $9$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.l

\(\chi_{2394}(163, \cdot)\)$,$ \(\chi_{2394}(235, \cdot)\)

$2394$ $133$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.m

\(\chi_{2394}(1369, \cdot)\)$,$ \(\chi_{2394}(2053, \cdot)\)

$2394$ $7$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.n

\(\chi_{2394}(2059, \cdot)\)$,$ \(\chi_{2394}(2101, \cdot)\)

$2394$ $171$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.o

\(\chi_{2394}(505, \cdot)\)$,$ \(\chi_{2394}(1261, \cdot)\)

$2394$ $19$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.p

\(\chi_{2394}(961, \cdot)\)$,$ \(\chi_{2394}(1831, \cdot)\)

$2394$ $1197$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.q

\(\chi_{2394}(1075, \cdot)\)$,$ \(\chi_{2394}(1717, \cdot)\)

$2394$ $1197$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.r

\(\chi_{2394}(919, \cdot)\)$,$ \(\chi_{2394}(1873, \cdot)\)

$2394$ $133$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.s

\(\chi_{2394}(463, \cdot)\)$,$ \(\chi_{2394}(1303, \cdot)\)

$2394$ $171$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.t

\(\chi_{2394}(1033, \cdot)\)$,$ \(\chi_{2394}(1759, \cdot)\)

$2394$ $1197$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.u

\(\chi_{2394}(457, \cdot)\)$,$ \(\chi_{2394}(571, \cdot)\)

$2394$ $63$ $3$ \(\mathbb{Q}(\zeta_3)\) even
2394.v

\(\chi_{2394}(191, \cdot)\)$,$ \(\chi_{2394}(1103, \cdot)\)

$2394$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.w

\(\chi_{2394}(569, \cdot)\)$,$ \(\chi_{2394}(1481, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.x

\(\chi_{2394}(733, \cdot)\)$,$ \(\chi_{2394}(1375, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.y

\(\chi_{2394}(1357, \cdot)\)$,$ \(\chi_{2394}(1399, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.z

\(\chi_{2394}(145, \cdot)\)$,$ \(\chi_{2394}(1585, \cdot)\)

$2394$ $133$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.ba

\(\chi_{2394}(2215, \cdot)\)$,$ \(\chi_{2394}(2287, \cdot)\)

$2394$ $133$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bb

\(\chi_{2394}(1147, \cdot)\)$,$ \(\chi_{2394}(1987, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bc

\(\chi_{2394}(103, \cdot)\)$,$ \(\chi_{2394}(1627, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.bd

\(\chi_{2394}(1019, \cdot)\)$,$ \(\chi_{2394}(1661, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.be

\(\chi_{2394}(995, \cdot)\)$,$ \(\chi_{2394}(1037, \cdot)\)

$2394$ $171$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bf

\(\chi_{2394}(809, \cdot)\)$,$ \(\chi_{2394}(2249, \cdot)\)

$2394$ $399$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bg

\(\chi_{2394}(107, \cdot)\)$,$ \(\chi_{2394}(179, \cdot)\)

$2394$ $399$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.bh

\(\chi_{2394}(407, \cdot)\)$,$ \(\chi_{2394}(1247, \cdot)\)

$2394$ $171$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.bi

\(\chi_{2394}(767, \cdot)\)$,$ \(\chi_{2394}(2291, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bj

\(\chi_{2394}(1291, \cdot)\)$,$ \(\chi_{2394}(2203, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.bk

\(\chi_{2394}(913, \cdot)\)$,$ \(\chi_{2394}(1825, \cdot)\)

$2394$ $63$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bl

\(\chi_{2394}(425, \cdot)\)$,$ \(\chi_{2394}(1949, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.bm

\(\chi_{2394}(1133, \cdot)\)$,$ \(\chi_{2394}(1889, \cdot)\)

$2394$ $399$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bn

\(\chi_{2394}(563, \cdot)\)$,$ \(\chi_{2394}(1433, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bo

\(\chi_{2394}(125, \cdot)\)$,$ \(\chi_{2394}(881, \cdot)\)

$2394$ $399$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.bp

\(\chi_{2394}(311, \cdot)\)$,$ \(\chi_{2394}(2063, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
2394.bq

\(\chi_{2394}(677, \cdot)\)$,$ \(\chi_{2394}(1319, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.br

\(\chi_{2394}(37, \cdot)\)$,$ \(\chi_{2394}(1747, \cdot)\)

$2394$ $133$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bs

\(\chi_{2394}(1471, \cdot)\)$,$ \(\chi_{2394}(2311, \cdot)\)

$2394$ $171$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bt

\(\chi_{2394}(151, \cdot)\)$,$ \(\chi_{2394}(1633, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bu

\(\chi_{2394}(373, \cdot)\)$,$ \(\chi_{2394}(2041, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bv

\(\chi_{2394}(1177, \cdot)\)$,$ \(\chi_{2394}(1975, \cdot)\)

$2394$ $171$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bw

\(\chi_{2394}(487, \cdot)\)$,$ \(\chi_{2394}(1927, \cdot)\)

$2394$ $133$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
2394.bx

\(\chi_{2394}(83, \cdot)\)$,$ \(\chi_{2394}(923, \cdot)\)

$2394$ $1197$ $6$ \(\mathbb{Q}(\zeta_3)\) even
Next   displayed columns for results