Learn more

The results below are complete, since the LMFDB contains all Dirichlet characters with modulus at most a million

Refine search


Results (1-50 of 60 matches)

Next   displayed columns for results
Orbit label Conrey labels Modulus Conductor Order Value field Parity Real Primitive Minimal
1274.a

\(\chi_{1274}(1, \cdot)\)

$1274$ $1$ $1$ \(\Q\) even
1274.b

\(\chi_{1274}(391, \cdot)\)

$1274$ $7$ $2$ \(\Q\) odd
1274.c

\(\chi_{1274}(1273, \cdot)\)

$1274$ $91$ $2$ \(\Q\) odd
1274.d

\(\chi_{1274}(883, \cdot)\)

$1274$ $13$ $2$ \(\Q\) even
1274.e

\(\chi_{1274}(165, \cdot)\)$,$ \(\chi_{1274}(471, \cdot)\)

$1274$ $91$ $3$ \(\mathbb{Q}(\zeta_3)\) even
1274.f

\(\chi_{1274}(79, \cdot)\)$,$ \(\chi_{1274}(1145, \cdot)\)

$1274$ $7$ $3$ \(\mathbb{Q}(\zeta_3)\) even
1274.g

\(\chi_{1274}(295, \cdot)\)$,$ \(\chi_{1274}(393, \cdot)\)

$1274$ $13$ $3$ \(\mathbb{Q}(\zeta_3)\) even
1274.h

\(\chi_{1274}(263, \cdot)\)$,$ \(\chi_{1274}(373, \cdot)\)

$1274$ $91$ $3$ \(\mathbb{Q}(\zeta_3)\) even
1274.i

\(\chi_{1274}(489, \cdot)\)$,$ \(\chi_{1274}(1175, \cdot)\)

$1274$ $91$ $4$ \(\mathbb{Q}(i)\) even
1274.j

\(\chi_{1274}(99, \cdot)\)$,$ \(\chi_{1274}(785, \cdot)\)

$1274$ $13$ $4$ \(\mathbb{Q}(i)\) odd
1274.k

\(\chi_{1274}(901, \cdot)\)$,$ \(\chi_{1274}(1011, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.l

\(\chi_{1274}(607, \cdot)\)$,$ \(\chi_{1274}(913, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.m

\(\chi_{1274}(491, \cdot)\)$,$ \(\chi_{1274}(589, \cdot)\)

$1274$ $13$ $6$ \(\mathbb{Q}(\zeta_3)\) even
1274.n

\(\chi_{1274}(753, \cdot)\)$,$ \(\chi_{1274}(961, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) even
1274.o

\(\chi_{1274}(459, \cdot)\)$,$ \(\chi_{1274}(569, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) even
1274.p

\(\chi_{1274}(685, \cdot)\)$,$ \(\chi_{1274}(783, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.q

\(\chi_{1274}(129, \cdot)\)$,$ \(\chi_{1274}(1195, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.r

\(\chi_{1274}(803, \cdot)\)$,$ \(\chi_{1274}(1109, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.s

\(\chi_{1274}(705, \cdot)\)$,$ \(\chi_{1274}(815, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.t

\(\chi_{1274}(313, \cdot)\)$,$ \(\chi_{1274}(521, \cdot)\)

$1274$ $7$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.u

\(\chi_{1274}(881, \cdot)\)$,$ \(\chi_{1274}(979, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) odd
1274.v

\(\chi_{1274}(361, \cdot)\)$,$ \(\chi_{1274}(667, \cdot)\)

$1274$ $91$ $6$ \(\mathbb{Q}(\zeta_3)\) even
1274.w

\(\chi_{1274}(183, \cdot)\)$, \cdots ,$\(\chi_{1274}(1093, \cdot)\)

$1274$ $49$ $7$ \(\Q(\zeta_{7})\) even
1274.x

\(\chi_{1274}(19, \cdot)\)$, \cdots ,$\(\chi_{1274}(1207, \cdot)\)

$1274$ $91$ $12$ \(\Q(\zeta_{12})\) even
1274.y

\(\chi_{1274}(275, \cdot)\)$, \cdots ,$\(\chi_{1274}(1047, \cdot)\)

$1274$ $91$ $12$ \(\Q(\zeta_{12})\) odd
1274.z

\(\chi_{1274}(197, \cdot)\)$, \cdots ,$\(\chi_{1274}(1177, \cdot)\)

$1274$ $13$ $12$ \(\Q(\zeta_{12})\) odd
1274.ba

\(\chi_{1274}(177, \cdot)\)$, \cdots ,$\(\chi_{1274}(1243, \cdot)\)

$1274$ $91$ $12$ \(\Q(\zeta_{12})\) odd
1274.bb

\(\chi_{1274}(97, \cdot)\)$, \cdots ,$\(\chi_{1274}(1077, \cdot)\)

$1274$ $91$ $12$ \(\Q(\zeta_{12})\) even
1274.bc

\(\chi_{1274}(31, \cdot)\)$, \cdots ,$\(\chi_{1274}(1097, \cdot)\)

$1274$ $91$ $12$ \(\Q(\zeta_{12})\) even
1274.bd

\(\chi_{1274}(227, \cdot)\)$, \cdots ,$\(\chi_{1274}(999, \cdot)\)

$1274$ $91$ $12$ \(\Q(\zeta_{12})\) even
1274.be

\(\chi_{1274}(67, \cdot)\)$, \cdots ,$\(\chi_{1274}(1255, \cdot)\)

$1274$ $91$ $12$ \(\Q(\zeta_{12})\) odd
1274.bf

\(\chi_{1274}(155, \cdot)\)$, \cdots ,$\(\chi_{1274}(1247, \cdot)\)

$1274$ $637$ $14$ \(\Q(\zeta_{7})\) even
1274.bg

\(\chi_{1274}(181, \cdot)\)$, \cdots ,$\(\chi_{1274}(1091, \cdot)\)

$1274$ $637$ $14$ \(\Q(\zeta_{7})\) odd
1274.bh

\(\chi_{1274}(27, \cdot)\)$, \cdots ,$\(\chi_{1274}(1119, \cdot)\)

$1274$ $49$ $14$ \(\Q(\zeta_{7})\) odd
1274.bi

\(\chi_{1274}(9, \cdot)\)$, \cdots ,$\(\chi_{1274}(1173, \cdot)\)

$1274$ $637$ $21$ \(\Q(\zeta_{21})\) even
1274.bj

\(\chi_{1274}(29, \cdot)\)$, \cdots ,$\(\chi_{1274}(1205, \cdot)\)

$1274$ $637$ $21$ \(\Q(\zeta_{21})\) even
1274.bk

\(\chi_{1274}(53, \cdot)\)$, \cdots ,$\(\chi_{1274}(1171, \cdot)\)

$1274$ $49$ $21$ \(\Q(\zeta_{21})\) even
1274.bl

\(\chi_{1274}(107, \cdot)\)$, \cdots ,$\(\chi_{1274}(1257, \cdot)\)

$1274$ $637$ $21$ \(\Q(\zeta_{21})\) even
1274.bm

\(\chi_{1274}(57, \cdot)\)$, \cdots ,$\(\chi_{1274}(1191, \cdot)\)

$1274$ $637$ $28$ \(\Q(\zeta_{28})\) odd
1274.bn

\(\chi_{1274}(83, \cdot)\)$, \cdots ,$\(\chi_{1274}(1217, \cdot)\)

$1274$ $637$ $28$ \(\Q(\zeta_{28})\) even
1274.bo

\(\chi_{1274}(121, \cdot)\)$, \cdots ,$\(\chi_{1274}(1271, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) even
1274.bp

\(\chi_{1274}(69, \cdot)\)$, \cdots ,$\(\chi_{1274}(1245, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) odd
1274.bq

\(\chi_{1274}(131, \cdot)\)$, \cdots ,$\(\chi_{1274}(1249, \cdot)\)

$1274$ $49$ $42$ \(\Q(\zeta_{21})\) odd
1274.br

\(\chi_{1274}(87, \cdot)\)$, \cdots ,$\(\chi_{1274}(1251, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) odd
1274.bs

\(\chi_{1274}(17, \cdot)\)$, \cdots ,$\(\chi_{1274}(1167, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) odd
1274.bt

\(\chi_{1274}(103, \cdot)\)$, \cdots ,$\(\chi_{1274}(1221, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) odd
1274.bu

\(\chi_{1274}(55, \cdot)\)$, \cdots ,$\(\chi_{1274}(1231, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) odd
1274.bv

\(\chi_{1274}(23, \cdot)\)$, \cdots ,$\(\chi_{1274}(1187, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) even
1274.bw

\(\chi_{1274}(25, \cdot)\)$, \cdots ,$\(\chi_{1274}(1143, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) even
1274.bx

\(\chi_{1274}(43, \cdot)\)$, \cdots ,$\(\chi_{1274}(1219, \cdot)\)

$1274$ $637$ $42$ \(\Q(\zeta_{21})\) even
Next   displayed columns for results