Properties

Label 9984.hd
Modulus $9984$
Conductor $1664$
Order $96$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(96)) M = H._module chi = DirichletCharacter(H, M([48,33,0,32])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(55,9984)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9984\)
Conductor: \(1664\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(96\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1664.df
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{9984}(55,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{96}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{59}{96}\right)\) \(i\) \(e\left(\frac{91}{96}\right)\)
\(\chi_{9984}(295,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{7}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{25}{96}\right)\) \(-i\) \(e\left(\frac{89}{96}\right)\)
\(\chi_{9984}(679,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{41}{96}\right)\) \(-i\) \(e\left(\frac{73}{96}\right)\)
\(\chi_{9984}(919,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{96}\right)\) \(i\) \(e\left(\frac{71}{96}\right)\)
\(\chi_{9984}(1303,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{23}{96}\right)\) \(i\) \(e\left(\frac{55}{96}\right)\)
\(\chi_{9984}(1543,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{85}{96}\right)\) \(-i\) \(e\left(\frac{53}{96}\right)\)
\(\chi_{9984}(1927,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{96}\right)\) \(-i\) \(e\left(\frac{37}{96}\right)\)
\(\chi_{9984}(2167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{67}{96}\right)\) \(i\) \(e\left(\frac{35}{96}\right)\)
\(\chi_{9984}(2551,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{83}{96}\right)\) \(i\) \(e\left(\frac{19}{96}\right)\)
\(\chi_{9984}(2791,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{79}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{53}{96}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{49}{96}\right)\) \(-i\) \(e\left(\frac{17}{96}\right)\)
\(\chi_{9984}(3175,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{65}{96}\right)\) \(-i\) \(e\left(\frac{1}{96}\right)\)
\(\chi_{9984}(3415,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{31}{96}\right)\) \(i\) \(e\left(\frac{95}{96}\right)\)
\(\chi_{9984}(3799,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{47}{96}\right)\) \(i\) \(e\left(\frac{79}{96}\right)\)
\(\chi_{9984}(4039,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{96}\right)\) \(-i\) \(e\left(\frac{77}{96}\right)\)
\(\chi_{9984}(4423,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{29}{96}\right)\) \(-i\) \(e\left(\frac{61}{96}\right)\)
\(\chi_{9984}(4663,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{91}{96}\right)\) \(i\) \(e\left(\frac{59}{96}\right)\)
\(\chi_{9984}(5047,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{53}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{55}{96}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{96}\right)\) \(i\) \(e\left(\frac{43}{96}\right)\)
\(\chi_{9984}(5287,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{55}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{73}{96}\right)\) \(-i\) \(e\left(\frac{41}{96}\right)\)
\(\chi_{9984}(5671,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{89}{96}\right)\) \(-i\) \(e\left(\frac{25}{96}\right)\)
\(\chi_{9984}(5911,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{73}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{55}{96}\right)\) \(i\) \(e\left(\frac{23}{96}\right)\)
\(\chi_{9984}(6295,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{89}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{67}{96}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{71}{96}\right)\) \(i\) \(e\left(\frac{7}{96}\right)\)
\(\chi_{9984}(6535,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{91}{96}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{89}{96}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{37}{96}\right)\) \(-i\) \(e\left(\frac{5}{96}\right)\)
\(\chi_{9984}(6919,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{73}{96}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{53}{96}\right)\) \(-i\) \(e\left(\frac{85}{96}\right)\)
\(\chi_{9984}(7159,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{19}{96}\right)\) \(i\) \(e\left(\frac{83}{96}\right)\)
\(\chi_{9984}(7543,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{79}{96}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{35}{96}\right)\) \(i\) \(e\left(\frac{67}{96}\right)\)
\(\chi_{9984}(7783,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{96}\right)\) \(-i\) \(e\left(\frac{65}{96}\right)\)
\(\chi_{9984}(8167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{85}{96}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{17}{96}\right)\) \(-i\) \(e\left(\frac{49}{96}\right)\)
\(\chi_{9984}(8407,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{79}{96}\right)\) \(i\) \(e\left(\frac{47}{96}\right)\)
\(\chi_{9984}(8791,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{91}{96}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{95}{96}\right)\) \(i\) \(e\left(\frac{31}{96}\right)\)
\(\chi_{9984}(9031,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{67}{96}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{61}{96}\right)\) \(-i\) \(e\left(\frac{29}{96}\right)\)
\(\chi_{9984}(9415,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{77}{96}\right)\) \(-i\) \(e\left(\frac{13}{96}\right)\)