Properties

Label 9984.dc
Modulus $9984$
Conductor $312$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,6,6,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(2177,9984)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9984\)
Conductor: \(312\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 312.bo
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.342487184769803354112.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{9984}(2177,\cdot)\) \(1\) \(1\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{9984}(2945,\cdot)\) \(1\) \(1\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{9984}(6017,\cdot)\) \(1\) \(1\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{9984}(9089,\cdot)\) \(1\) \(1\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\)