Properties

Label 9984.8581
Modulus $9984$
Conductor $256$
Order $64$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([0,33,0,0]))
 
Copy content pari:[g,chi] = znchar(Mod(8581,9984))
 

Basic properties

Modulus: \(9984\)
Conductor: \(256\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{256}(133,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9984.gi

\(\chi_{9984}(157,\cdot)\) \(\chi_{9984}(469,\cdot)\) \(\chi_{9984}(781,\cdot)\) \(\chi_{9984}(1093,\cdot)\) \(\chi_{9984}(1405,\cdot)\) \(\chi_{9984}(1717,\cdot)\) \(\chi_{9984}(2029,\cdot)\) \(\chi_{9984}(2341,\cdot)\) \(\chi_{9984}(2653,\cdot)\) \(\chi_{9984}(2965,\cdot)\) \(\chi_{9984}(3277,\cdot)\) \(\chi_{9984}(3589,\cdot)\) \(\chi_{9984}(3901,\cdot)\) \(\chi_{9984}(4213,\cdot)\) \(\chi_{9984}(4525,\cdot)\) \(\chi_{9984}(4837,\cdot)\) \(\chi_{9984}(5149,\cdot)\) \(\chi_{9984}(5461,\cdot)\) \(\chi_{9984}(5773,\cdot)\) \(\chi_{9984}(6085,\cdot)\) \(\chi_{9984}(6397,\cdot)\) \(\chi_{9984}(6709,\cdot)\) \(\chi_{9984}(7021,\cdot)\) \(\chi_{9984}(7333,\cdot)\) \(\chi_{9984}(7645,\cdot)\) \(\chi_{9984}(7957,\cdot)\) \(\chi_{9984}(8269,\cdot)\) \(\chi_{9984}(8581,\cdot)\) \(\chi_{9984}(8893,\cdot)\) \(\chi_{9984}(9205,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

Values on generators

\((8191,3589,3329,769)\) → \((1,e\left(\frac{33}{64}\right),1,1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 9984 }(8581, a) \) \(1\)\(1\)\(e\left(\frac{33}{64}\right)\)\(e\left(\frac{5}{32}\right)\)\(e\left(\frac{53}{64}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{55}{64}\right)\)\(e\left(\frac{7}{32}\right)\)\(e\left(\frac{1}{32}\right)\)\(e\left(\frac{27}{64}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{43}{64}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9984 }(8581,a) \;\) at \(\;a = \) e.g. 2