Properties

Label 9984.79
Modulus $9984$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,13,0,0]))
 
Copy content pari:[g,chi] = znchar(Mod(79,9984))
 

Basic properties

Modulus: \(9984\)
Conductor: \(64\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{64}(43,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9984.eg

\(\chi_{9984}(79,\cdot)\) \(\chi_{9984}(1327,\cdot)\) \(\chi_{9984}(2575,\cdot)\) \(\chi_{9984}(3823,\cdot)\) \(\chi_{9984}(5071,\cdot)\) \(\chi_{9984}(6319,\cdot)\) \(\chi_{9984}(7567,\cdot)\) \(\chi_{9984}(8815,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.604462909807314587353088.1

Values on generators

\((8191,3589,3329,769)\) → \((-1,e\left(\frac{13}{16}\right),1,1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 9984 }(79, a) \) \(-1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(-i\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(1\)\(e\left(\frac{7}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9984 }(79,a) \;\) at \(\;a = \) e.g. 2