Properties

Label 9984.53
Modulus $9984$
Conductor $768$
Order $64$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([0,5,32,0]))
 
Copy content pari:[g,chi] = znchar(Mod(53,9984))
 

Basic properties

Modulus: \(9984\)
Conductor: \(768\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{768}(53,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9984.gh

\(\chi_{9984}(53,\cdot)\) \(\chi_{9984}(365,\cdot)\) \(\chi_{9984}(677,\cdot)\) \(\chi_{9984}(989,\cdot)\) \(\chi_{9984}(1301,\cdot)\) \(\chi_{9984}(1613,\cdot)\) \(\chi_{9984}(1925,\cdot)\) \(\chi_{9984}(2237,\cdot)\) \(\chi_{9984}(2549,\cdot)\) \(\chi_{9984}(2861,\cdot)\) \(\chi_{9984}(3173,\cdot)\) \(\chi_{9984}(3485,\cdot)\) \(\chi_{9984}(3797,\cdot)\) \(\chi_{9984}(4109,\cdot)\) \(\chi_{9984}(4421,\cdot)\) \(\chi_{9984}(4733,\cdot)\) \(\chi_{9984}(5045,\cdot)\) \(\chi_{9984}(5357,\cdot)\) \(\chi_{9984}(5669,\cdot)\) \(\chi_{9984}(5981,\cdot)\) \(\chi_{9984}(6293,\cdot)\) \(\chi_{9984}(6605,\cdot)\) \(\chi_{9984}(6917,\cdot)\) \(\chi_{9984}(7229,\cdot)\) \(\chi_{9984}(7541,\cdot)\) \(\chi_{9984}(7853,\cdot)\) \(\chi_{9984}(8165,\cdot)\) \(\chi_{9984}(8477,\cdot)\) \(\chi_{9984}(8789,\cdot)\) \(\chi_{9984}(9101,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

Values on generators

\((8191,3589,3329,769)\) → \((1,e\left(\frac{5}{64}\right),-1,1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 9984 }(53, a) \) \(-1\)\(1\)\(e\left(\frac{37}{64}\right)\)\(e\left(\frac{25}{32}\right)\)\(e\left(\frac{9}{64}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{51}{64}\right)\)\(e\left(\frac{19}{32}\right)\)\(e\left(\frac{5}{32}\right)\)\(e\left(\frac{7}{64}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{23}{64}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9984 }(53,a) \;\) at \(\;a = \) e.g. 2