sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9984, base_ring=CyclotomicField(192))
M = H._module
chi = DirichletCharacter(H, M([0,63,96,112]))
pari:[g,chi] = znchar(Mod(245,9984))
| Modulus: | \(9984\) | |
| Conductor: | \(9984\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(192\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{9984}(245,\cdot)\)
\(\chi_{9984}(293,\cdot)\)
\(\chi_{9984}(461,\cdot)\)
\(\chi_{9984}(509,\cdot)\)
\(\chi_{9984}(869,\cdot)\)
\(\chi_{9984}(917,\cdot)\)
\(\chi_{9984}(1085,\cdot)\)
\(\chi_{9984}(1133,\cdot)\)
\(\chi_{9984}(1493,\cdot)\)
\(\chi_{9984}(1541,\cdot)\)
\(\chi_{9984}(1709,\cdot)\)
\(\chi_{9984}(1757,\cdot)\)
\(\chi_{9984}(2117,\cdot)\)
\(\chi_{9984}(2165,\cdot)\)
\(\chi_{9984}(2333,\cdot)\)
\(\chi_{9984}(2381,\cdot)\)
\(\chi_{9984}(2741,\cdot)\)
\(\chi_{9984}(2789,\cdot)\)
\(\chi_{9984}(2957,\cdot)\)
\(\chi_{9984}(3005,\cdot)\)
\(\chi_{9984}(3365,\cdot)\)
\(\chi_{9984}(3413,\cdot)\)
\(\chi_{9984}(3581,\cdot)\)
\(\chi_{9984}(3629,\cdot)\)
\(\chi_{9984}(3989,\cdot)\)
\(\chi_{9984}(4037,\cdot)\)
\(\chi_{9984}(4205,\cdot)\)
\(\chi_{9984}(4253,\cdot)\)
\(\chi_{9984}(4613,\cdot)\)
\(\chi_{9984}(4661,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8191,3589,3329,769)\) → \((1,e\left(\frac{21}{64}\right),-1,e\left(\frac{7}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 9984 }(245, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{64}\right)\) | \(e\left(\frac{67}{96}\right)\) | \(e\left(\frac{91}{192}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{89}{192}\right)\) | \(e\left(\frac{89}{96}\right)\) | \(e\left(\frac{5}{32}\right)\) | \(e\left(\frac{37}{192}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{149}{192}\right)\) |
sage:chi.jacobi_sum(n)