Properties

Label 9984.245
Modulus $9984$
Conductor $9984$
Order $192$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9984, base_ring=CyclotomicField(192)) M = H._module chi = DirichletCharacter(H, M([0,63,96,112]))
 
Copy content pari:[g,chi] = znchar(Mod(245,9984))
 

Basic properties

Modulus: \(9984\)
Conductor: \(9984\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(192\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9984.hk

\(\chi_{9984}(245,\cdot)\) \(\chi_{9984}(293,\cdot)\) \(\chi_{9984}(461,\cdot)\) \(\chi_{9984}(509,\cdot)\) \(\chi_{9984}(869,\cdot)\) \(\chi_{9984}(917,\cdot)\) \(\chi_{9984}(1085,\cdot)\) \(\chi_{9984}(1133,\cdot)\) \(\chi_{9984}(1493,\cdot)\) \(\chi_{9984}(1541,\cdot)\) \(\chi_{9984}(1709,\cdot)\) \(\chi_{9984}(1757,\cdot)\) \(\chi_{9984}(2117,\cdot)\) \(\chi_{9984}(2165,\cdot)\) \(\chi_{9984}(2333,\cdot)\) \(\chi_{9984}(2381,\cdot)\) \(\chi_{9984}(2741,\cdot)\) \(\chi_{9984}(2789,\cdot)\) \(\chi_{9984}(2957,\cdot)\) \(\chi_{9984}(3005,\cdot)\) \(\chi_{9984}(3365,\cdot)\) \(\chi_{9984}(3413,\cdot)\) \(\chi_{9984}(3581,\cdot)\) \(\chi_{9984}(3629,\cdot)\) \(\chi_{9984}(3989,\cdot)\) \(\chi_{9984}(4037,\cdot)\) \(\chi_{9984}(4205,\cdot)\) \(\chi_{9984}(4253,\cdot)\) \(\chi_{9984}(4613,\cdot)\) \(\chi_{9984}(4661,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{192})$
Fixed field: Number field defined by a degree 192 polynomial (not computed)

Values on generators

\((8191,3589,3329,769)\) → \((1,e\left(\frac{21}{64}\right),-1,e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 9984 }(245, a) \) \(1\)\(1\)\(e\left(\frac{5}{64}\right)\)\(e\left(\frac{67}{96}\right)\)\(e\left(\frac{91}{192}\right)\)\(e\left(\frac{41}{48}\right)\)\(e\left(\frac{89}{192}\right)\)\(e\left(\frac{89}{96}\right)\)\(e\left(\frac{5}{32}\right)\)\(e\left(\frac{37}{192}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{149}{192}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9984 }(245,a) \;\) at \(\;a = \) e.g. 2