Properties

Label 9900.13
Modulus $9900$
Conductor $2475$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9900, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([0,20,57,6]))
 
Copy content pari:[g,chi] = znchar(Mod(13,9900))
 

Basic properties

Modulus: \(9900\)
Conductor: \(2475\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2475}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9900.lx

\(\chi_{9900}(13,\cdot)\) \(\chi_{9900}(733,\cdot)\) \(\chi_{9900}(1777,\cdot)\) \(\chi_{9900}(2173,\cdot)\) \(\chi_{9900}(2317,\cdot)\) \(\chi_{9900}(3253,\cdot)\) \(\chi_{9900}(4237,\cdot)\) \(\chi_{9900}(5497,\cdot)\) \(\chi_{9900}(6613,\cdot)\) \(\chi_{9900}(7333,\cdot)\) \(\chi_{9900}(7537,\cdot)\) \(\chi_{9900}(8377,\cdot)\) \(\chi_{9900}(8773,\cdot)\) \(\chi_{9900}(8797,\cdot)\) \(\chi_{9900}(8917,\cdot)\) \(\chi_{9900}(9853,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((4951,5501,2377,4501)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{19}{20}\right),e\left(\frac{1}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 9900 }(13, a) \) \(1\)\(1\)\(e\left(\frac{47}{60}\right)\)\(e\left(\frac{49}{60}\right)\)\(i\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{60}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(-i\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9900 }(13,a) \;\) at \(\;a = \) e.g. 2