sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9800, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,2,1,0]))
pari:[g,chi] = znchar(Mod(9507,9800))
\(\chi_{9800}(2843,\cdot)\)
\(\chi_{9800}(9507,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7351,4901,1177,5001)\) → \((-1,-1,i,1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 9800 }(9507, a) \) |
\(1\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(i\) | \(i\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)