sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,5]))
pari:[g,chi] = znchar(Mod(139,980))
| Modulus: | \(980\) | |
| Conductor: | \(980\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(14\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{980}(139,\cdot)\)
\(\chi_{980}(279,\cdot)\)
\(\chi_{980}(419,\cdot)\)
\(\chi_{980}(559,\cdot)\)
\(\chi_{980}(699,\cdot)\)
\(\chi_{980}(839,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((491,197,101)\) → \((-1,-1,e\left(\frac{5}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 980 }(139, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)