sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(975, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,42,5]))
pari:[g,chi] = znchar(Mod(509,975))
| Modulus: | \(975\) | |
| Conductor: | \(975\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{975}(59,\cdot)\)
\(\chi_{975}(89,\cdot)\)
\(\chi_{975}(119,\cdot)\)
\(\chi_{975}(254,\cdot)\)
\(\chi_{975}(284,\cdot)\)
\(\chi_{975}(314,\cdot)\)
\(\chi_{975}(344,\cdot)\)
\(\chi_{975}(479,\cdot)\)
\(\chi_{975}(509,\cdot)\)
\(\chi_{975}(539,\cdot)\)
\(\chi_{975}(644,\cdot)\)
\(\chi_{975}(704,\cdot)\)
\(\chi_{975}(734,\cdot)\)
\(\chi_{975}(839,\cdot)\)
\(\chi_{975}(869,\cdot)\)
\(\chi_{975}(929,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((326,352,301)\) → \((-1,e\left(\frac{7}{10}\right),e\left(\frac{1}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(14\) | \(16\) | \(17\) | \(19\) | \(22\) |
| \( \chi_{ 975 }(509, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)