sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(97020, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,28,21,72,42]))
pari:[g,chi] = znchar(Mod(56407,97020))
| Modulus: | \(97020\) | |
| Conductor: | \(97020\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{97020}(43,\cdot)\)
\(\chi_{97020}(967,\cdot)\)
\(\chi_{97020}(9283,\cdot)\)
\(\chi_{97020}(13903,\cdot)\)
\(\chi_{97020}(14827,\cdot)\)
\(\chi_{97020}(19447,\cdot)\)
\(\chi_{97020}(23143,\cdot)\)
\(\chi_{97020}(27763,\cdot)\)
\(\chi_{97020}(28687,\cdot)\)
\(\chi_{97020}(33307,\cdot)\)
\(\chi_{97020}(37003,\cdot)\)
\(\chi_{97020}(41623,\cdot)\)
\(\chi_{97020}(42547,\cdot)\)
\(\chi_{97020}(47167,\cdot)\)
\(\chi_{97020}(55483,\cdot)\)
\(\chi_{97020}(56407,\cdot)\)
\(\chi_{97020}(61027,\cdot)\)
\(\chi_{97020}(64723,\cdot)\)
\(\chi_{97020}(69343,\cdot)\)
\(\chi_{97020}(74887,\cdot)\)
\(\chi_{97020}(78583,\cdot)\)
\(\chi_{97020}(84127,\cdot)\)
\(\chi_{97020}(88747,\cdot)\)
\(\chi_{97020}(92443,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((48511,43121,77617,9901,44101)\) → \((-1,e\left(\frac{1}{3}\right),i,e\left(\frac{6}{7}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
| \( \chi_{ 97020 }(56407, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(-1\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{31}{84}\right)\) |
sage:chi.jacobi_sum(n)