Properties

Label 97020.30847
Modulus $97020$
Conductor $97020$
Order $420$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97020, base_ring=CyclotomicField(420)) M = H._module chi = DirichletCharacter(H, M([210,140,105,170,336]))
 
Copy content pari:[g,chi] = znchar(Mod(30847,97020))
 

Basic properties

Modulus: \(97020\)
Conductor: \(97020\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(420\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 97020.bjh

\(\chi_{97020}(103,\cdot)\) \(\chi_{97020}(367,\cdot)\) \(\chi_{97020}(2623,\cdot)\) \(\chi_{97020}(2887,\cdot)\) \(\chi_{97020}(3127,\cdot)\) \(\chi_{97020}(4387,\cdot)\) \(\chi_{97020}(5647,\cdot)\) \(\chi_{97020}(6163,\cdot)\) \(\chi_{97020}(7423,\cdot)\) \(\chi_{97020}(8167,\cdot)\) \(\chi_{97020}(8683,\cdot)\) \(\chi_{97020}(11443,\cdot)\) \(\chi_{97020}(11707,\cdot)\) \(\chi_{97020}(12703,\cdot)\) \(\chi_{97020}(13963,\cdot)\) \(\chi_{97020}(14227,\cdot)\) \(\chi_{97020}(16747,\cdot)\) \(\chi_{97020}(16987,\cdot)\) \(\chi_{97020}(19507,\cdot)\) \(\chi_{97020}(21283,\cdot)\) \(\chi_{97020}(22027,\cdot)\) \(\chi_{97020}(22543,\cdot)\) \(\chi_{97020}(25063,\cdot)\) \(\chi_{97020}(25567,\cdot)\) \(\chi_{97020}(26563,\cdot)\) \(\chi_{97020}(26827,\cdot)\) \(\chi_{97020}(27823,\cdot)\) \(\chi_{97020}(28087,\cdot)\) \(\chi_{97020}(30343,\cdot)\) \(\chi_{97020}(30847,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{420})$
Fixed field: Number field defined by a degree 420 polynomial (not computed)

Values on generators

\((48511,43121,77617,9901,44101)\) → \((-1,e\left(\frac{1}{3}\right),i,e\left(\frac{17}{42}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 97020 }(30847, a) \) \(-1\)\(1\)\(e\left(\frac{241}{420}\right)\)\(e\left(\frac{239}{420}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{25}{84}\right)\)\(e\left(\frac{151}{210}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{337}{420}\right)\)\(e\left(\frac{29}{210}\right)\)\(e\left(\frac{1}{84}\right)\)\(e\left(\frac{71}{140}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 97020 }(30847,a) \;\) at \(\;a = \) e.g. 2