sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(97020, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([210,140,105,170,336]))
pari:[g,chi] = znchar(Mod(30847,97020))
| Modulus: | \(97020\) | |
| Conductor: | \(97020\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{97020}(103,\cdot)\)
\(\chi_{97020}(367,\cdot)\)
\(\chi_{97020}(2623,\cdot)\)
\(\chi_{97020}(2887,\cdot)\)
\(\chi_{97020}(3127,\cdot)\)
\(\chi_{97020}(4387,\cdot)\)
\(\chi_{97020}(5647,\cdot)\)
\(\chi_{97020}(6163,\cdot)\)
\(\chi_{97020}(7423,\cdot)\)
\(\chi_{97020}(8167,\cdot)\)
\(\chi_{97020}(8683,\cdot)\)
\(\chi_{97020}(11443,\cdot)\)
\(\chi_{97020}(11707,\cdot)\)
\(\chi_{97020}(12703,\cdot)\)
\(\chi_{97020}(13963,\cdot)\)
\(\chi_{97020}(14227,\cdot)\)
\(\chi_{97020}(16747,\cdot)\)
\(\chi_{97020}(16987,\cdot)\)
\(\chi_{97020}(19507,\cdot)\)
\(\chi_{97020}(21283,\cdot)\)
\(\chi_{97020}(22027,\cdot)\)
\(\chi_{97020}(22543,\cdot)\)
\(\chi_{97020}(25063,\cdot)\)
\(\chi_{97020}(25567,\cdot)\)
\(\chi_{97020}(26563,\cdot)\)
\(\chi_{97020}(26827,\cdot)\)
\(\chi_{97020}(27823,\cdot)\)
\(\chi_{97020}(28087,\cdot)\)
\(\chi_{97020}(30343,\cdot)\)
\(\chi_{97020}(30847,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((48511,43121,77617,9901,44101)\) → \((-1,e\left(\frac{1}{3}\right),i,e\left(\frac{17}{42}\right),e\left(\frac{4}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) |
| \( \chi_{ 97020 }(30847, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{241}{420}\right)\) | \(e\left(\frac{239}{420}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{151}{210}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{337}{420}\right)\) | \(e\left(\frac{29}{210}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{71}{140}\right)\) |
sage:chi.jacobi_sum(n)