sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(961, base_ring=CyclotomicField(930))
M = H._module
chi = DirichletCharacter(H, M([256]))
pari:[g,chi] = znchar(Mod(493,961))
Modulus: | \(961\) | |
Conductor: | \(961\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(465\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{961}(7,\cdot)\)
\(\chi_{961}(9,\cdot)\)
\(\chi_{961}(10,\cdot)\)
\(\chi_{961}(14,\cdot)\)
\(\chi_{961}(18,\cdot)\)
\(\chi_{961}(19,\cdot)\)
\(\chi_{961}(20,\cdot)\)
\(\chi_{961}(28,\cdot)\)
\(\chi_{961}(38,\cdot)\)
\(\chi_{961}(40,\cdot)\)
\(\chi_{961}(41,\cdot)\)
\(\chi_{961}(45,\cdot)\)
\(\chi_{961}(49,\cdot)\)
\(\chi_{961}(50,\cdot)\)
\(\chi_{961}(51,\cdot)\)
\(\chi_{961}(59,\cdot)\)
\(\chi_{961}(69,\cdot)\)
\(\chi_{961}(71,\cdot)\)
\(\chi_{961}(72,\cdot)\)
\(\chi_{961}(76,\cdot)\)
\(\chi_{961}(80,\cdot)\)
\(\chi_{961}(81,\cdot)\)
\(\chi_{961}(82,\cdot)\)
\(\chi_{961}(90,\cdot)\)
\(\chi_{961}(100,\cdot)\)
\(\chi_{961}(102,\cdot)\)
\(\chi_{961}(103,\cdot)\)
\(\chi_{961}(107,\cdot)\)
\(\chi_{961}(111,\cdot)\)
\(\chi_{961}(112,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{128}{465}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 961 }(493, a) \) |
\(1\) | \(1\) | \(e\left(\frac{119}{155}\right)\) | \(e\left(\frac{128}{465}\right)\) | \(e\left(\frac{83}{155}\right)\) | \(e\left(\frac{11}{93}\right)\) | \(e\left(\frac{4}{93}\right)\) | \(e\left(\frac{59}{465}\right)\) | \(e\left(\frac{47}{155}\right)\) | \(e\left(\frac{256}{465}\right)\) | \(e\left(\frac{412}{465}\right)\) | \(e\left(\frac{424}{465}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)