Properties

Modulus $961$
Structure \(C_{930}\)
Order $930$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(961)
 
pari: g = idealstar(,961,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 930
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{930}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{961}(3,\cdot)$

First 32 of 930 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{961}(1,\cdot)\) 961.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{961}(2,\cdot)\) 961.l 155 yes \(1\) \(1\) \(e\left(\frac{106}{155}\right)\) \(e\left(\frac{104}{155}\right)\) \(e\left(\frac{57}{155}\right)\) \(e\left(\frac{7}{31}\right)\) \(e\left(\frac{11}{31}\right)\) \(e\left(\frac{77}{155}\right)\) \(e\left(\frac{8}{155}\right)\) \(e\left(\frac{53}{155}\right)\) \(e\left(\frac{141}{155}\right)\) \(e\left(\frac{112}{155}\right)\)
\(\chi_{961}(3,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{104}{155}\right)\) \(e\left(\frac{1}{930}\right)\) \(e\left(\frac{53}{155}\right)\) \(e\left(\frac{44}{93}\right)\) \(e\left(\frac{125}{186}\right)\) \(e\left(\frac{329}{465}\right)\) \(e\left(\frac{2}{155}\right)\) \(e\left(\frac{1}{465}\right)\) \(e\left(\frac{67}{465}\right)\) \(e\left(\frac{323}{930}\right)\)
\(\chi_{961}(4,\cdot)\) 961.l 155 yes \(1\) \(1\) \(e\left(\frac{57}{155}\right)\) \(e\left(\frac{53}{155}\right)\) \(e\left(\frac{114}{155}\right)\) \(e\left(\frac{14}{31}\right)\) \(e\left(\frac{22}{31}\right)\) \(e\left(\frac{154}{155}\right)\) \(e\left(\frac{16}{155}\right)\) \(e\left(\frac{106}{155}\right)\) \(e\left(\frac{127}{155}\right)\) \(e\left(\frac{69}{155}\right)\)
\(\chi_{961}(5,\cdot)\) 961.k 93 yes \(1\) \(1\) \(e\left(\frac{7}{31}\right)\) \(e\left(\frac{44}{93}\right)\) \(e\left(\frac{14}{31}\right)\) \(e\left(\frac{16}{93}\right)\) \(e\left(\frac{65}{93}\right)\) \(e\left(\frac{29}{93}\right)\) \(e\left(\frac{21}{31}\right)\) \(e\left(\frac{88}{93}\right)\) \(e\left(\frac{37}{93}\right)\) \(e\left(\frac{76}{93}\right)\)
\(\chi_{961}(6,\cdot)\) 961.m 186 yes \(-1\) \(1\) \(e\left(\frac{11}{31}\right)\) \(e\left(\frac{125}{186}\right)\) \(e\left(\frac{22}{31}\right)\) \(e\left(\frac{65}{93}\right)\) \(e\left(\frac{5}{186}\right)\) \(e\left(\frac{19}{93}\right)\) \(e\left(\frac{2}{31}\right)\) \(e\left(\frac{32}{93}\right)\) \(e\left(\frac{5}{93}\right)\) \(e\left(\frac{13}{186}\right)\)
\(\chi_{961}(7,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{77}{155}\right)\) \(e\left(\frac{329}{465}\right)\) \(e\left(\frac{154}{155}\right)\) \(e\left(\frac{29}{93}\right)\) \(e\left(\frac{19}{93}\right)\) \(e\left(\frac{257}{465}\right)\) \(e\left(\frac{76}{155}\right)\) \(e\left(\frac{193}{465}\right)\) \(e\left(\frac{376}{465}\right)\) \(e\left(\frac{247}{465}\right)\)
\(\chi_{961}(8,\cdot)\) 961.l 155 yes \(1\) \(1\) \(e\left(\frac{8}{155}\right)\) \(e\left(\frac{2}{155}\right)\) \(e\left(\frac{16}{155}\right)\) \(e\left(\frac{21}{31}\right)\) \(e\left(\frac{2}{31}\right)\) \(e\left(\frac{76}{155}\right)\) \(e\left(\frac{24}{155}\right)\) \(e\left(\frac{4}{155}\right)\) \(e\left(\frac{113}{155}\right)\) \(e\left(\frac{26}{155}\right)\)
\(\chi_{961}(9,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{53}{155}\right)\) \(e\left(\frac{1}{465}\right)\) \(e\left(\frac{106}{155}\right)\) \(e\left(\frac{88}{93}\right)\) \(e\left(\frac{32}{93}\right)\) \(e\left(\frac{193}{465}\right)\) \(e\left(\frac{4}{155}\right)\) \(e\left(\frac{2}{465}\right)\) \(e\left(\frac{134}{465}\right)\) \(e\left(\frac{323}{465}\right)\)
\(\chi_{961}(10,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{141}{155}\right)\) \(e\left(\frac{67}{465}\right)\) \(e\left(\frac{127}{155}\right)\) \(e\left(\frac{37}{93}\right)\) \(e\left(\frac{5}{93}\right)\) \(e\left(\frac{376}{465}\right)\) \(e\left(\frac{113}{155}\right)\) \(e\left(\frac{134}{465}\right)\) \(e\left(\frac{143}{465}\right)\) \(e\left(\frac{251}{465}\right)\)
\(\chi_{961}(11,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{112}{155}\right)\) \(e\left(\frac{323}{930}\right)\) \(e\left(\frac{69}{155}\right)\) \(e\left(\frac{76}{93}\right)\) \(e\left(\frac{13}{186}\right)\) \(e\left(\frac{247}{465}\right)\) \(e\left(\frac{26}{155}\right)\) \(e\left(\frac{323}{465}\right)\) \(e\left(\frac{251}{465}\right)\) \(e\left(\frac{169}{930}\right)\)
\(\chi_{961}(12,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{6}{155}\right)\) \(e\left(\frac{319}{930}\right)\) \(e\left(\frac{12}{155}\right)\) \(e\left(\frac{86}{93}\right)\) \(e\left(\frac{71}{186}\right)\) \(e\left(\frac{326}{465}\right)\) \(e\left(\frac{18}{155}\right)\) \(e\left(\frac{319}{465}\right)\) \(e\left(\frac{448}{465}\right)\) \(e\left(\frac{737}{930}\right)\)
\(\chi_{961}(13,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{9}{155}\right)\) \(e\left(\frac{401}{930}\right)\) \(e\left(\frac{18}{155}\right)\) \(e\left(\frac{67}{93}\right)\) \(e\left(\frac{91}{186}\right)\) \(e\left(\frac{334}{465}\right)\) \(e\left(\frac{27}{155}\right)\) \(e\left(\frac{401}{465}\right)\) \(e\left(\frac{362}{465}\right)\) \(e\left(\frac{253}{930}\right)\)
\(\chi_{961}(14,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{28}{155}\right)\) \(e\left(\frac{176}{465}\right)\) \(e\left(\frac{56}{155}\right)\) \(e\left(\frac{50}{93}\right)\) \(e\left(\frac{52}{93}\right)\) \(e\left(\frac{23}{465}\right)\) \(e\left(\frac{84}{155}\right)\) \(e\left(\frac{352}{465}\right)\) \(e\left(\frac{334}{465}\right)\) \(e\left(\frac{118}{465}\right)\)
\(\chi_{961}(15,\cdot)\) 961.n 310 yes \(-1\) \(1\) \(e\left(\frac{139}{155}\right)\) \(e\left(\frac{147}{310}\right)\) \(e\left(\frac{123}{155}\right)\) \(e\left(\frac{20}{31}\right)\) \(e\left(\frac{23}{62}\right)\) \(e\left(\frac{3}{155}\right)\) \(e\left(\frac{107}{155}\right)\) \(e\left(\frac{147}{155}\right)\) \(e\left(\frac{84}{155}\right)\) \(e\left(\frac{51}{310}\right)\)
\(\chi_{961}(16,\cdot)\) 961.l 155 yes \(1\) \(1\) \(e\left(\frac{114}{155}\right)\) \(e\left(\frac{106}{155}\right)\) \(e\left(\frac{73}{155}\right)\) \(e\left(\frac{28}{31}\right)\) \(e\left(\frac{13}{31}\right)\) \(e\left(\frac{153}{155}\right)\) \(e\left(\frac{32}{155}\right)\) \(e\left(\frac{57}{155}\right)\) \(e\left(\frac{99}{155}\right)\) \(e\left(\frac{138}{155}\right)\)
\(\chi_{961}(17,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{123}{155}\right)\) \(e\left(\frac{727}{930}\right)\) \(e\left(\frac{91}{155}\right)\) \(e\left(\frac{89}{93}\right)\) \(e\left(\frac{107}{186}\right)\) \(e\left(\frac{173}{465}\right)\) \(e\left(\frac{59}{155}\right)\) \(e\left(\frac{262}{465}\right)\) \(e\left(\frac{349}{465}\right)\) \(e\left(\frac{461}{930}\right)\)
\(\chi_{961}(18,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{4}{155}\right)\) \(e\left(\frac{313}{465}\right)\) \(e\left(\frac{8}{155}\right)\) \(e\left(\frac{16}{93}\right)\) \(e\left(\frac{65}{93}\right)\) \(e\left(\frac{424}{465}\right)\) \(e\left(\frac{12}{155}\right)\) \(e\left(\frac{161}{465}\right)\) \(e\left(\frac{92}{465}\right)\) \(e\left(\frac{194}{465}\right)\)
\(\chi_{961}(19,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{91}{155}\right)\) \(e\left(\frac{107}{465}\right)\) \(e\left(\frac{27}{155}\right)\) \(e\left(\frac{23}{93}\right)\) \(e\left(\frac{76}{93}\right)\) \(e\left(\frac{191}{465}\right)\) \(e\left(\frac{118}{155}\right)\) \(e\left(\frac{214}{465}\right)\) \(e\left(\frac{388}{465}\right)\) \(e\left(\frac{151}{465}\right)\)
\(\chi_{961}(20,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{92}{155}\right)\) \(e\left(\frac{379}{465}\right)\) \(e\left(\frac{29}{155}\right)\) \(e\left(\frac{58}{93}\right)\) \(e\left(\frac{38}{93}\right)\) \(e\left(\frac{142}{465}\right)\) \(e\left(\frac{121}{155}\right)\) \(e\left(\frac{293}{465}\right)\) \(e\left(\frac{101}{465}\right)\) \(e\left(\frac{122}{465}\right)\)
\(\chi_{961}(21,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{26}{155}\right)\) \(e\left(\frac{659}{930}\right)\) \(e\left(\frac{52}{155}\right)\) \(e\left(\frac{73}{93}\right)\) \(e\left(\frac{163}{186}\right)\) \(e\left(\frac{121}{465}\right)\) \(e\left(\frac{78}{155}\right)\) \(e\left(\frac{194}{465}\right)\) \(e\left(\frac{443}{465}\right)\) \(e\left(\frac{817}{930}\right)\)
\(\chi_{961}(22,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{63}{155}\right)\) \(e\left(\frac{17}{930}\right)\) \(e\left(\frac{126}{155}\right)\) \(e\left(\frac{4}{93}\right)\) \(e\left(\frac{79}{186}\right)\) \(e\left(\frac{13}{465}\right)\) \(e\left(\frac{34}{155}\right)\) \(e\left(\frac{17}{465}\right)\) \(e\left(\frac{209}{465}\right)\) \(e\left(\frac{841}{930}\right)\)
\(\chi_{961}(23,\cdot)\) 961.n 310 yes \(-1\) \(1\) \(e\left(\frac{58}{155}\right)\) \(e\left(\frac{29}{310}\right)\) \(e\left(\frac{116}{155}\right)\) \(e\left(\frac{5}{31}\right)\) \(e\left(\frac{29}{62}\right)\) \(e\left(\frac{86}{155}\right)\) \(e\left(\frac{19}{155}\right)\) \(e\left(\frac{29}{155}\right)\) \(e\left(\frac{83}{155}\right)\) \(e\left(\frac{67}{310}\right)\)
\(\chi_{961}(24,\cdot)\) 961.p 930 yes \(-1\) \(1\) \(e\left(\frac{112}{155}\right)\) \(e\left(\frac{13}{930}\right)\) \(e\left(\frac{69}{155}\right)\) \(e\left(\frac{14}{93}\right)\) \(e\left(\frac{137}{186}\right)\) \(e\left(\frac{92}{465}\right)\) \(e\left(\frac{26}{155}\right)\) \(e\left(\frac{13}{465}\right)\) \(e\left(\frac{406}{465}\right)\) \(e\left(\frac{479}{930}\right)\)
\(\chi_{961}(25,\cdot)\) 961.k 93 yes \(1\) \(1\) \(e\left(\frac{14}{31}\right)\) \(e\left(\frac{88}{93}\right)\) \(e\left(\frac{28}{31}\right)\) \(e\left(\frac{32}{93}\right)\) \(e\left(\frac{37}{93}\right)\) \(e\left(\frac{58}{93}\right)\) \(e\left(\frac{11}{31}\right)\) \(e\left(\frac{83}{93}\right)\) \(e\left(\frac{74}{93}\right)\) \(e\left(\frac{59}{93}\right)\)
\(\chi_{961}(26,\cdot)\) 961.m 186 yes \(-1\) \(1\) \(e\left(\frac{23}{31}\right)\) \(e\left(\frac{19}{186}\right)\) \(e\left(\frac{15}{31}\right)\) \(e\left(\frac{88}{93}\right)\) \(e\left(\frac{157}{186}\right)\) \(e\left(\frac{20}{93}\right)\) \(e\left(\frac{7}{31}\right)\) \(e\left(\frac{19}{93}\right)\) \(e\left(\frac{64}{93}\right)\) \(e\left(\frac{185}{186}\right)\)
\(\chi_{961}(27,\cdot)\) 961.n 310 yes \(-1\) \(1\) \(e\left(\frac{2}{155}\right)\) \(e\left(\frac{1}{310}\right)\) \(e\left(\frac{4}{155}\right)\) \(e\left(\frac{13}{31}\right)\) \(e\left(\frac{1}{62}\right)\) \(e\left(\frac{19}{155}\right)\) \(e\left(\frac{6}{155}\right)\) \(e\left(\frac{1}{155}\right)\) \(e\left(\frac{67}{155}\right)\) \(e\left(\frac{13}{310}\right)\)
\(\chi_{961}(28,\cdot)\) 961.o 465 yes \(1\) \(1\) \(e\left(\frac{134}{155}\right)\) \(e\left(\frac{23}{465}\right)\) \(e\left(\frac{113}{155}\right)\) \(e\left(\frac{71}{93}\right)\) \(e\left(\frac{85}{93}\right)\) \(e\left(\frac{254}{465}\right)\) \(e\left(\frac{92}{155}\right)\) \(e\left(\frac{46}{465}\right)\) \(e\left(\frac{292}{465}\right)\) \(e\left(\frac{454}{465}\right)\)
\(\chi_{961}(29,\cdot)\) 961.n 310 yes \(-1\) \(1\) \(e\left(\frac{151}{155}\right)\) \(e\left(\frac{153}{310}\right)\) \(e\left(\frac{147}{155}\right)\) \(e\left(\frac{5}{31}\right)\) \(e\left(\frac{29}{62}\right)\) \(e\left(\frac{117}{155}\right)\) \(e\left(\frac{143}{155}\right)\) \(e\left(\frac{153}{155}\right)\) \(e\left(\frac{21}{155}\right)\) \(e\left(\frac{129}{310}\right)\)
\(\chi_{961}(30,\cdot)\) 961.j 62 yes \(-1\) \(1\) \(e\left(\frac{18}{31}\right)\) \(e\left(\frac{9}{62}\right)\) \(e\left(\frac{5}{31}\right)\) \(e\left(\frac{27}{31}\right)\) \(e\left(\frac{45}{62}\right)\) \(e\left(\frac{16}{31}\right)\) \(e\left(\frac{23}{31}\right)\) \(e\left(\frac{9}{31}\right)\) \(e\left(\frac{14}{31}\right)\) \(e\left(\frac{55}{62}\right)\)
\(\chi_{961}(32,\cdot)\) 961.i 31 yes \(1\) \(1\) \(e\left(\frac{13}{31}\right)\) \(e\left(\frac{11}{31}\right)\) \(e\left(\frac{26}{31}\right)\) \(e\left(\frac{4}{31}\right)\) \(e\left(\frac{24}{31}\right)\) \(e\left(\frac{15}{31}\right)\) \(e\left(\frac{8}{31}\right)\) \(e\left(\frac{22}{31}\right)\) \(e\left(\frac{17}{31}\right)\) \(e\left(\frac{19}{31}\right)\)
\(\chi_{961}(33,\cdot)\) 961.l 155 yes \(1\) \(1\) \(e\left(\frac{61}{155}\right)\) \(e\left(\frac{54}{155}\right)\) \(e\left(\frac{122}{155}\right)\) \(e\left(\frac{9}{31}\right)\) \(e\left(\frac{23}{31}\right)\) \(e\left(\frac{37}{155}\right)\) \(e\left(\frac{28}{155}\right)\) \(e\left(\frac{108}{155}\right)\) \(e\left(\frac{106}{155}\right)\) \(e\left(\frac{82}{155}\right)\)
Click here to search among the remaining 898 characters.