Properties

Label 9386.915
Modulus $9386$
Conductor $4693$
Order $684$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(684)) M = H._module chi = DirichletCharacter(H, M([513,242]))
 
Copy content pari:[g,chi] = znchar(Mod(915,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(684\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4693}(915,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.dm

\(\chi_{9386}(21,\cdot)\) \(\chi_{9386}(109,\cdot)\) \(\chi_{9386}(135,\cdot)\) \(\chi_{9386}(203,\cdot)\) \(\chi_{9386}(281,\cdot)\) \(\chi_{9386}(317,\cdot)\) \(\chi_{9386}(395,\cdot)\) \(\chi_{9386}(421,\cdot)\) \(\chi_{9386}(447,\cdot)\) \(\chi_{9386}(489,\cdot)\) \(\chi_{9386}(515,\cdot)\) \(\chi_{9386}(603,\cdot)\) \(\chi_{9386}(629,\cdot)\) \(\chi_{9386}(697,\cdot)\) \(\chi_{9386}(775,\cdot)\) \(\chi_{9386}(801,\cdot)\) \(\chi_{9386}(811,\cdot)\) \(\chi_{9386}(827,\cdot)\) \(\chi_{9386}(889,\cdot)\) \(\chi_{9386}(915,\cdot)\) \(\chi_{9386}(941,\cdot)\) \(\chi_{9386}(983,\cdot)\) \(\chi_{9386}(1009,\cdot)\) \(\chi_{9386}(1097,\cdot)\) \(\chi_{9386}(1123,\cdot)\) \(\chi_{9386}(1191,\cdot)\) \(\chi_{9386}(1269,\cdot)\) \(\chi_{9386}(1295,\cdot)\) \(\chi_{9386}(1305,\cdot)\) \(\chi_{9386}(1321,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{684})$
Fixed field: Number field defined by a degree 684 polynomial (not computed)

Values on generators

\((1445,3251)\) → \((-i,e\left(\frac{121}{342}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(915, a) \) \(1\)\(1\)\(e\left(\frac{61}{342}\right)\)\(e\left(\frac{569}{684}\right)\)\(e\left(\frac{73}{228}\right)\)\(e\left(\frac{61}{171}\right)\)\(e\left(\frac{77}{228}\right)\)\(e\left(\frac{7}{684}\right)\)\(e\left(\frac{157}{342}\right)\)\(e\left(\frac{341}{684}\right)\)\(e\left(\frac{53}{342}\right)\)\(e\left(\frac{227}{342}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(915,a) \;\) at \(\;a = \) e.g. 2