Properties

Label 9386.71
Modulus $9386$
Conductor $4693$
Order $684$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(684)) M = H._module chi = DirichletCharacter(H, M([285,158]))
 
Copy content pari:[g,chi] = znchar(Mod(71,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(684\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4693}(71,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.dn

\(\chi_{9386}(15,\cdot)\) \(\chi_{9386}(33,\cdot)\) \(\chi_{9386}(59,\cdot)\) \(\chi_{9386}(67,\cdot)\) \(\chi_{9386}(71,\cdot)\) \(\chi_{9386}(89,\cdot)\) \(\chi_{9386}(97,\cdot)\) \(\chi_{9386}(167,\cdot)\) \(\chi_{9386}(219,\cdot)\) \(\chi_{9386}(345,\cdot)\) \(\chi_{9386}(383,\cdot)\) \(\chi_{9386}(431,\cdot)\) \(\chi_{9386}(509,\cdot)\) \(\chi_{9386}(527,\cdot)\) \(\chi_{9386}(553,\cdot)\) \(\chi_{9386}(561,\cdot)\) \(\chi_{9386}(565,\cdot)\) \(\chi_{9386}(583,\cdot)\) \(\chi_{9386}(591,\cdot)\) \(\chi_{9386}(661,\cdot)\) \(\chi_{9386}(713,\cdot)\) \(\chi_{9386}(839,\cdot)\) \(\chi_{9386}(877,\cdot)\) \(\chi_{9386}(925,\cdot)\) \(\chi_{9386}(1003,\cdot)\) \(\chi_{9386}(1047,\cdot)\) \(\chi_{9386}(1059,\cdot)\) \(\chi_{9386}(1077,\cdot)\) \(\chi_{9386}(1085,\cdot)\) \(\chi_{9386}(1155,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{684})$
Fixed field: Number field defined by a degree 684 polynomial (not computed)

Values on generators

\((1445,3251)\) → \((e\left(\frac{5}{12}\right),e\left(\frac{79}{342}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(71, a) \) \(1\)\(1\)\(e\left(\frac{265}{342}\right)\)\(e\left(\frac{233}{684}\right)\)\(e\left(\frac{53}{228}\right)\)\(e\left(\frac{94}{171}\right)\)\(e\left(\frac{109}{228}\right)\)\(e\left(\frac{79}{684}\right)\)\(e\left(\frac{13}{342}\right)\)\(e\left(\frac{5}{684}\right)\)\(e\left(\frac{305}{342}\right)\)\(e\left(\frac{233}{342}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(71,a) \;\) at \(\;a = \) e.g. 2