sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9386, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([1,5]))
pari:[g,chi] = znchar(Mod(69,9386))
\(\chi_{9386}(69,\cdot)\)
\(\chi_{9386}(4625,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1445,3251)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{5}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
\( \chi_{ 9386 }(69, a) \) |
\(-1\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)