Properties

Label 9386.61
Modulus $9386$
Conductor $4693$
Order $171$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(342)) M = H._module chi = DirichletCharacter(H, M([228,92]))
 
Copy content pari:[g,chi] = znchar(Mod(61,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(171\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4693}(61,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.cs

\(\chi_{9386}(9,\cdot)\) \(\chi_{9386}(55,\cdot)\) \(\chi_{9386}(61,\cdot)\) \(\chi_{9386}(81,\cdot)\) \(\chi_{9386}(139,\cdot)\) \(\chi_{9386}(263,\cdot)\) \(\chi_{9386}(503,\cdot)\) \(\chi_{9386}(549,\cdot)\) \(\chi_{9386}(555,\cdot)\) \(\chi_{9386}(575,\cdot)\) \(\chi_{9386}(633,\cdot)\) \(\chi_{9386}(757,\cdot)\) \(\chi_{9386}(997,\cdot)\) \(\chi_{9386}(1043,\cdot)\) \(\chi_{9386}(1049,\cdot)\) \(\chi_{9386}(1069,\cdot)\) \(\chi_{9386}(1127,\cdot)\) \(\chi_{9386}(1251,\cdot)\) \(\chi_{9386}(1491,\cdot)\) \(\chi_{9386}(1537,\cdot)\) \(\chi_{9386}(1563,\cdot)\) \(\chi_{9386}(1621,\cdot)\) \(\chi_{9386}(1745,\cdot)\) \(\chi_{9386}(1985,\cdot)\) \(\chi_{9386}(2031,\cdot)\) \(\chi_{9386}(2037,\cdot)\) \(\chi_{9386}(2057,\cdot)\) \(\chi_{9386}(2115,\cdot)\) \(\chi_{9386}(2239,\cdot)\) \(\chi_{9386}(2479,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{171})$
Fixed field: Number field defined by a degree 171 polynomial (not computed)

Values on generators

\((1445,3251)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{46}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(61, a) \) \(1\)\(1\)\(e\left(\frac{10}{171}\right)\)\(e\left(\frac{70}{171}\right)\)\(e\left(\frac{13}{19}\right)\)\(e\left(\frac{20}{171}\right)\)\(e\left(\frac{2}{19}\right)\)\(e\left(\frac{80}{171}\right)\)\(e\left(\frac{22}{171}\right)\)\(e\left(\frac{127}{171}\right)\)\(e\left(\frac{161}{171}\right)\)\(e\left(\frac{140}{171}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(61,a) \;\) at \(\;a = \) e.g. 2