sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9386, base_ring=CyclotomicField(342))
M = H._module
chi = DirichletCharacter(H, M([285,146]))
pari:[g,chi] = znchar(Mod(23,9386))
\(\chi_{9386}(17,\cdot)\)
\(\chi_{9386}(23,\cdot)\)
\(\chi_{9386}(43,\cdot)\)
\(\chi_{9386}(101,\cdot)\)
\(\chi_{9386}(225,\cdot)\)
\(\chi_{9386}(465,\cdot)\)
\(\chi_{9386}(511,\cdot)\)
\(\chi_{9386}(517,\cdot)\)
\(\chi_{9386}(537,\cdot)\)
\(\chi_{9386}(719,\cdot)\)
\(\chi_{9386}(959,\cdot)\)
\(\chi_{9386}(1005,\cdot)\)
\(\chi_{9386}(1011,\cdot)\)
\(\chi_{9386}(1031,\cdot)\)
\(\chi_{9386}(1089,\cdot)\)
\(\chi_{9386}(1213,\cdot)\)
\(\chi_{9386}(1453,\cdot)\)
\(\chi_{9386}(1499,\cdot)\)
\(\chi_{9386}(1505,\cdot)\)
\(\chi_{9386}(1525,\cdot)\)
\(\chi_{9386}(1583,\cdot)\)
\(\chi_{9386}(1707,\cdot)\)
\(\chi_{9386}(1947,\cdot)\)
\(\chi_{9386}(1993,\cdot)\)
\(\chi_{9386}(1999,\cdot)\)
\(\chi_{9386}(2019,\cdot)\)
\(\chi_{9386}(2077,\cdot)\)
\(\chi_{9386}(2201,\cdot)\)
\(\chi_{9386}(2441,\cdot)\)
\(\chi_{9386}(2487,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1445,3251)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{73}{171}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
\( \chi_{ 9386 }(23, a) \) |
\(1\) | \(1\) | \(e\left(\frac{115}{171}\right)\) | \(e\left(\frac{185}{342}\right)\) | \(e\left(\frac{23}{114}\right)\) | \(e\left(\frac{59}{171}\right)\) | \(e\left(\frac{43}{114}\right)\) | \(e\left(\frac{73}{342}\right)\) | \(e\left(\frac{25}{171}\right)\) | \(e\left(\frac{299}{342}\right)\) | \(e\left(\frac{113}{171}\right)\) | \(e\left(\frac{14}{171}\right)\) |
sage:chi.jacobi_sum(n)