Properties

Label 9386.23
Modulus $9386$
Conductor $4693$
Order $342$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(342)) M = H._module chi = DirichletCharacter(H, M([285,146]))
 
Copy content pari:[g,chi] = znchar(Mod(23,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(342\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4693}(23,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.dg

\(\chi_{9386}(17,\cdot)\) \(\chi_{9386}(23,\cdot)\) \(\chi_{9386}(43,\cdot)\) \(\chi_{9386}(101,\cdot)\) \(\chi_{9386}(225,\cdot)\) \(\chi_{9386}(465,\cdot)\) \(\chi_{9386}(511,\cdot)\) \(\chi_{9386}(517,\cdot)\) \(\chi_{9386}(537,\cdot)\) \(\chi_{9386}(719,\cdot)\) \(\chi_{9386}(959,\cdot)\) \(\chi_{9386}(1005,\cdot)\) \(\chi_{9386}(1011,\cdot)\) \(\chi_{9386}(1031,\cdot)\) \(\chi_{9386}(1089,\cdot)\) \(\chi_{9386}(1213,\cdot)\) \(\chi_{9386}(1453,\cdot)\) \(\chi_{9386}(1499,\cdot)\) \(\chi_{9386}(1505,\cdot)\) \(\chi_{9386}(1525,\cdot)\) \(\chi_{9386}(1583,\cdot)\) \(\chi_{9386}(1707,\cdot)\) \(\chi_{9386}(1947,\cdot)\) \(\chi_{9386}(1993,\cdot)\) \(\chi_{9386}(1999,\cdot)\) \(\chi_{9386}(2019,\cdot)\) \(\chi_{9386}(2077,\cdot)\) \(\chi_{9386}(2201,\cdot)\) \(\chi_{9386}(2441,\cdot)\) \(\chi_{9386}(2487,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{171})$
Fixed field: Number field defined by a degree 342 polynomial (not computed)

Values on generators

\((1445,3251)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{73}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(23, a) \) \(1\)\(1\)\(e\left(\frac{115}{171}\right)\)\(e\left(\frac{185}{342}\right)\)\(e\left(\frac{23}{114}\right)\)\(e\left(\frac{59}{171}\right)\)\(e\left(\frac{43}{114}\right)\)\(e\left(\frac{73}{342}\right)\)\(e\left(\frac{25}{171}\right)\)\(e\left(\frac{299}{342}\right)\)\(e\left(\frac{113}{171}\right)\)\(e\left(\frac{14}{171}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(23,a) \;\) at \(\;a = \) e.g. 2