Properties

Label 9386.2165
Modulus $9386$
Conductor $247$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([11,6]))
 
Copy content pari:[g,chi] = znchar(Mod(2165,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(247\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{247}(189,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.be

\(\chi_{9386}(721,\cdot)\) \(\chi_{9386}(2165,\cdot)\) \(\chi_{9386}(4331,\cdot)\) \(\chi_{9386}(7941,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.84313764630777811597.1

Values on generators

\((1445,3251)\) → \((e\left(\frac{11}{12}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(2165, a) \) \(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(i\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(i\)\(e\left(\frac{1}{6}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(2165,a) \;\) at \(\;a = \) e.g. 2