Properties

Label 9386.2001
Modulus $9386$
Conductor $4693$
Order $342$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(342)) M = H._module chi = DirichletCharacter(H, M([171,302]))
 
Copy content pari:[g,chi] = znchar(Mod(2001,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(4693\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(342\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4693}(2001,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.dh

\(\chi_{9386}(25,\cdot)\) \(\chi_{9386}(207,\cdot)\) \(\chi_{9386}(233,\cdot)\) \(\chi_{9386}(441,\cdot)\) \(\chi_{9386}(519,\cdot)\) \(\chi_{9386}(701,\cdot)\) \(\chi_{9386}(727,\cdot)\) \(\chi_{9386}(883,\cdot)\) \(\chi_{9386}(909,\cdot)\) \(\chi_{9386}(935,\cdot)\) \(\chi_{9386}(1013,\cdot)\) \(\chi_{9386}(1195,\cdot)\) \(\chi_{9386}(1221,\cdot)\) \(\chi_{9386}(1377,\cdot)\) \(\chi_{9386}(1403,\cdot)\) \(\chi_{9386}(1429,\cdot)\) \(\chi_{9386}(1507,\cdot)\) \(\chi_{9386}(1715,\cdot)\) \(\chi_{9386}(1871,\cdot)\) \(\chi_{9386}(1897,\cdot)\) \(\chi_{9386}(1923,\cdot)\) \(\chi_{9386}(2001,\cdot)\) \(\chi_{9386}(2183,\cdot)\) \(\chi_{9386}(2209,\cdot)\) \(\chi_{9386}(2365,\cdot)\) \(\chi_{9386}(2391,\cdot)\) \(\chi_{9386}(2417,\cdot)\) \(\chi_{9386}(2495,\cdot)\) \(\chi_{9386}(2677,\cdot)\) \(\chi_{9386}(2703,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{171})$
Fixed field: Number field defined by a degree 342 polynomial (not computed)

Values on generators

\((1445,3251)\) → \((-1,e\left(\frac{151}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(2001, a) \) \(1\)\(1\)\(e\left(\frac{127}{171}\right)\)\(e\left(\frac{125}{342}\right)\)\(e\left(\frac{109}{114}\right)\)\(e\left(\frac{83}{171}\right)\)\(e\left(\frac{65}{114}\right)\)\(e\left(\frac{37}{342}\right)\)\(e\left(\frac{97}{171}\right)\)\(e\left(\frac{239}{342}\right)\)\(e\left(\frac{158}{171}\right)\)\(e\left(\frac{125}{171}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(2001,a) \;\) at \(\;a = \) e.g. 2