Properties

Label 9386.1689
Modulus $9386$
Conductor $247$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9386, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,10]))
 
Copy content pari:[g,chi] = znchar(Mod(1689,9386))
 

Basic properties

Modulus: \(9386\)
Conductor: \(247\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{247}(207,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9386.bl

\(\chi_{9386}(389,\cdot)\) \(\chi_{9386}(415,\cdot)\) \(\chi_{9386}(1689,\cdot)\) \(\chi_{9386}(3483,\cdot)\) \(\chi_{9386}(5875,\cdot)\) \(\chi_{9386}(7643,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1445,3251)\) → \((-1,e\left(\frac{5}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 9386 }(1689, a) \) \(1\)\(1\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9386 }(1689,a) \;\) at \(\;a = \) e.g. 2