Properties

Label 936.203
Modulus $936$
Conductor $936$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,6,10,3]))
 
Copy content pari:[g,chi] = znchar(Mod(203,936))
 

Basic properties

Modulus: \(936\)
Conductor: \(936\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 936.eo

\(\chi_{936}(83,\cdot)\) \(\chi_{936}(203,\cdot)\) \(\chi_{936}(515,\cdot)\) \(\chi_{936}(707,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.1076992496812124640903168.1

Values on generators

\((703,469,209,145)\) → \((-1,-1,e\left(\frac{5}{6}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 936 }(203, a) \) \(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(1\)\(i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 936 }(203,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 936 }(203,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 936 }(203,·),\chi_{ 936 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 936 }(203,·)) \;\) at \(\; a,b = \) e.g. 1,2