Properties

Label 935.cn
Modulus $935$
Conductor $935$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(935, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([20,16,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(37,935)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(935\)
Conductor: \(935\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(12\) \(13\) \(14\)
\(\chi_{935}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{80}\right)\)
\(\chi_{935}(58,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{80}\right)\)
\(\chi_{935}(82,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{61}{80}\right)\)
\(\chi_{935}(97,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{49}{80}\right)\)
\(\chi_{935}(108,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{80}\right)\)
\(\chi_{935}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{67}{80}\right)\)
\(\chi_{935}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{79}{80}\right)\)
\(\chi_{935}(192,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{80}\right)\)
\(\chi_{935}(207,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{69}{80}\right)\)
\(\chi_{935}(267,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{80}\right)\)
\(\chi_{935}(278,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{27}{80}\right)\)
\(\chi_{935}(313,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{71}{80}\right)\)
\(\chi_{935}(333,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{80}\right)\)
\(\chi_{935}(368,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{51}{80}\right)\)
\(\chi_{935}(377,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{80}\right)\)
\(\chi_{935}(422,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{80}\right)\)
\(\chi_{935}(522,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{80}\right)\)
\(\chi_{935}(532,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{73}{80}\right)\)
\(\chi_{935}(533,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{80}\right)\)
\(\chi_{935}(588,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{31}{80}\right)\)
\(\chi_{935}(592,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{80}\right)\)
\(\chi_{935}(632,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{21}{80}\right)\)
\(\chi_{935}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{80}\right)\)
\(\chi_{935}(702,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{80}\right)\)
\(\chi_{935}(708,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{80}\right)\)
\(\chi_{935}(762,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{77}{80}\right)\)
\(\chi_{935}(823,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{39}{80}\right)\)
\(\chi_{935}(862,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{33}{80}\right)\)
\(\chi_{935}(872,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{57}{80}\right)\)
\(\chi_{935}(873,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{43}{80}\right)\)
\(\chi_{935}(878,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{80}\right)\)