Properties

Label 935.194
Modulus $935$
Conductor $935$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(935, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,56,55]))
 
Copy content pari:[g,chi] = znchar(Mod(194,935))
 

Basic properties

Modulus: \(935\)
Conductor: \(935\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 935.cp

\(\chi_{935}(24,\cdot)\) \(\chi_{935}(29,\cdot)\) \(\chi_{935}(39,\cdot)\) \(\chi_{935}(74,\cdot)\) \(\chi_{935}(79,\cdot)\) \(\chi_{935}(129,\cdot)\) \(\chi_{935}(139,\cdot)\) \(\chi_{935}(184,\cdot)\) \(\chi_{935}(194,\cdot)\) \(\chi_{935}(244,\cdot)\) \(\chi_{935}(249,\cdot)\) \(\chi_{935}(294,\cdot)\) \(\chi_{935}(299,\cdot)\) \(\chi_{935}(354,\cdot)\) \(\chi_{935}(369,\cdot)\) \(\chi_{935}(414,\cdot)\) \(\chi_{935}(464,\cdot)\) \(\chi_{935}(469,\cdot)\) \(\chi_{935}(479,\cdot)\) \(\chi_{935}(524,\cdot)\) \(\chi_{935}(534,\cdot)\) \(\chi_{935}(589,\cdot)\) \(\chi_{935}(624,\cdot)\) \(\chi_{935}(634,\cdot)\) \(\chi_{935}(734,\cdot)\) \(\chi_{935}(754,\cdot)\) \(\chi_{935}(789,\cdot)\) \(\chi_{935}(794,\cdot)\) \(\chi_{935}(809,\cdot)\) \(\chi_{935}(844,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((562,596,496)\) → \((-1,e\left(\frac{7}{10}\right),e\left(\frac{11}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\( \chi_{ 935 }(194, a) \) \(1\)\(1\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{63}{80}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{49}{80}\right)\)\(e\left(\frac{77}{80}\right)\)\(e\left(\frac{19}{40}\right)\)\(e\left(\frac{23}{40}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{63}{80}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 935 }(194,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 935 }(194,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 935 }(194,·),\chi_{ 935 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 935 }(194,·)) \;\) at \(\; a,b = \) e.g. 1,2