Properties

Label 925.852
Modulus $925$
Conductor $25$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([1,0]))
 
Copy content pari:[g,chi] = znchar(Mod(852,925))
 

Basic properties

Modulus: \(925\)
Conductor: \(25\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 925.bf

\(\chi_{925}(38,\cdot)\) \(\chi_{925}(112,\cdot)\) \(\chi_{925}(223,\cdot)\) \(\chi_{925}(297,\cdot)\) \(\chi_{925}(408,\cdot)\) \(\chi_{925}(667,\cdot)\) \(\chi_{925}(778,\cdot)\) \(\chi_{925}(852,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((852,76)\) → \((e\left(\frac{1}{20}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 925 }(852, a) \) \(-1\)\(1\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(i\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{19}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 925 }(852,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 925 }(852,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 925 }(852,·),\chi_{ 925 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 925 }(852,·)) \;\) at \(\; a,b = \) e.g. 1,2