sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([1,0]))
pari:[g,chi] = znchar(Mod(852,925))
\(\chi_{925}(38,\cdot)\)
\(\chi_{925}(112,\cdot)\)
\(\chi_{925}(223,\cdot)\)
\(\chi_{925}(297,\cdot)\)
\(\chi_{925}(408,\cdot)\)
\(\chi_{925}(667,\cdot)\)
\(\chi_{925}(778,\cdot)\)
\(\chi_{925}(852,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((852,76)\) → \((e\left(\frac{1}{20}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 925 }(852, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(i\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)