Properties

Label 925.83
Modulus $925$
Conductor $925$
Order $180$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([27,80]))
 
Copy content pari:[g,chi] = znchar(Mod(83,925))
 

Basic properties

Modulus: \(925\)
Conductor: \(925\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 925.cc

\(\chi_{925}(12,\cdot)\) \(\chi_{925}(33,\cdot)\) \(\chi_{925}(53,\cdot)\) \(\chi_{925}(83,\cdot)\) \(\chi_{925}(108,\cdot)\) \(\chi_{925}(123,\cdot)\) \(\chi_{925}(127,\cdot)\) \(\chi_{925}(192,\cdot)\) \(\chi_{925}(197,\cdot)\) \(\chi_{925}(238,\cdot)\) \(\chi_{925}(292,\cdot)\) \(\chi_{925}(303,\cdot)\) \(\chi_{925}(308,\cdot)\) \(\chi_{925}(312,\cdot)\) \(\chi_{925}(342,\cdot)\) \(\chi_{925}(367,\cdot)\) \(\chi_{925}(377,\cdot)\) \(\chi_{925}(403,\cdot)\) \(\chi_{925}(423,\cdot)\) \(\chi_{925}(453,\cdot)\) \(\chi_{925}(477,\cdot)\) \(\chi_{925}(478,\cdot)\) \(\chi_{925}(488,\cdot)\) \(\chi_{925}(497,\cdot)\) \(\chi_{925}(527,\cdot)\) \(\chi_{925}(552,\cdot)\) \(\chi_{925}(562,\cdot)\) \(\chi_{925}(567,\cdot)\) \(\chi_{925}(588,\cdot)\) \(\chi_{925}(608,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((852,76)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 925 }(83, a) \) \(-1\)\(1\)\(e\left(\frac{107}{180}\right)\)\(e\left(\frac{109}{180}\right)\)\(e\left(\frac{17}{90}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{47}{60}\right)\)\(e\left(\frac{19}{90}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{143}{180}\right)\)\(e\left(\frac{133}{180}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 925 }(83,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 925 }(83,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 925 }(83,·),\chi_{ 925 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 925 }(83,·)) \;\) at \(\; a,b = \) e.g. 1,2