sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([9,10]))
pari:[g,chi] = znchar(Mod(508,925))
| Modulus: | \(925\) | |
| Conductor: | \(925\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{925}(27,\cdot)\)
\(\chi_{925}(48,\cdot)\)
\(\chi_{925}(122,\cdot)\)
\(\chi_{925}(138,\cdot)\)
\(\chi_{925}(212,\cdot)\)
\(\chi_{925}(233,\cdot)\)
\(\chi_{925}(323,\cdot)\)
\(\chi_{925}(397,\cdot)\)
\(\chi_{925}(492,\cdot)\)
\(\chi_{925}(508,\cdot)\)
\(\chi_{925}(603,\cdot)\)
\(\chi_{925}(677,\cdot)\)
\(\chi_{925}(767,\cdot)\)
\(\chi_{925}(788,\cdot)\)
\(\chi_{925}(862,\cdot)\)
\(\chi_{925}(878,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((852,76)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{1}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 925 }(508, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)