Properties

Label 925.298
Modulus $925$
Conductor $925$
Order $180$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([99,5]))
 
Copy content pari:[g,chi] = znchar(Mod(298,925))
 

Basic properties

Modulus: \(925\)
Conductor: \(925\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 925.cg

\(\chi_{925}(17,\cdot)\) \(\chi_{925}(22,\cdot)\) \(\chi_{925}(42,\cdot)\) \(\chi_{925}(72,\cdot)\) \(\chi_{925}(87,\cdot)\) \(\chi_{925}(98,\cdot)\) \(\chi_{925}(113,\cdot)\) \(\chi_{925}(163,\cdot)\) \(\chi_{925}(167,\cdot)\) \(\chi_{925}(202,\cdot)\) \(\chi_{925}(203,\cdot)\) \(\chi_{925}(227,\cdot)\) \(\chi_{925}(272,\cdot)\) \(\chi_{925}(283,\cdot)\) \(\chi_{925}(298,\cdot)\) \(\chi_{925}(328,\cdot)\) \(\chi_{925}(348,\cdot)\) \(\chi_{925}(352,\cdot)\) \(\chi_{925}(353,\cdot)\) \(\chi_{925}(387,\cdot)\) \(\chi_{925}(388,\cdot)\) \(\chi_{925}(392,\cdot)\) \(\chi_{925}(412,\cdot)\) \(\chi_{925}(442,\cdot)\) \(\chi_{925}(483,\cdot)\) \(\chi_{925}(513,\cdot)\) \(\chi_{925}(533,\cdot)\) \(\chi_{925}(537,\cdot)\) \(\chi_{925}(538,\cdot)\) \(\chi_{925}(572,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((852,76)\) → \((e\left(\frac{11}{20}\right),e\left(\frac{1}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 925 }(298, a) \) \(1\)\(1\)\(e\left(\frac{26}{45}\right)\)\(e\left(\frac{103}{180}\right)\)\(e\left(\frac{7}{45}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{13}{90}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{131}{180}\right)\)\(e\left(\frac{34}{45}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 925 }(298,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 925 }(298,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 925 }(298,·),\chi_{ 925 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 925 }(298,·)) \;\) at \(\; a,b = \) e.g. 1,2