Properties

Label 925.19
Modulus $925$
Conductor $925$
Order $180$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([162,175]))
 
Copy content pari:[g,chi] = znchar(Mod(19,925))
 

Basic properties

Modulus: \(925\)
Conductor: \(925\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 925.cf

\(\chi_{925}(19,\cdot)\) \(\chi_{925}(39,\cdot)\) \(\chi_{925}(54,\cdot)\) \(\chi_{925}(59,\cdot)\) \(\chi_{925}(69,\cdot)\) \(\chi_{925}(79,\cdot)\) \(\chi_{925}(89,\cdot)\) \(\chi_{925}(94,\cdot)\) \(\chi_{925}(109,\cdot)\) \(\chi_{925}(129,\cdot)\) \(\chi_{925}(204,\cdot)\) \(\chi_{925}(209,\cdot)\) \(\chi_{925}(239,\cdot)\) \(\chi_{925}(244,\cdot)\) \(\chi_{925}(254,\cdot)\) \(\chi_{925}(264,\cdot)\) \(\chi_{925}(279,\cdot)\) \(\chi_{925}(294,\cdot)\) \(\chi_{925}(309,\cdot)\) \(\chi_{925}(314,\cdot)\) \(\chi_{925}(389,\cdot)\) \(\chi_{925}(394,\cdot)\) \(\chi_{925}(409,\cdot)\) \(\chi_{925}(429,\cdot)\) \(\chi_{925}(439,\cdot)\) \(\chi_{925}(459,\cdot)\) \(\chi_{925}(464,\cdot)\) \(\chi_{925}(479,\cdot)\) \(\chi_{925}(494,\cdot)\) \(\chi_{925}(579,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((852,76)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{35}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 925 }(19, a) \) \(-1\)\(1\)\(e\left(\frac{157}{180}\right)\)\(e\left(\frac{26}{45}\right)\)\(e\left(\frac{67}{90}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{7}{45}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{29}{90}\right)\)\(e\left(\frac{143}{180}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 925 }(19,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 925 }(19,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 925 }(19,·),\chi_{ 925 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 925 }(19,·)) \;\) at \(\; a,b = \) e.g. 1,2