Properties

Label 9216.1031
Modulus $9216$
Conductor $4608$
Order $384$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9216, base_ring=CyclotomicField(384)) M = H._module chi = DirichletCharacter(H, M([192,303,320]))
 
Copy content pari:[g,chi] = znchar(Mod(1031,9216))
 

Basic properties

Modulus: \(9216\)
Conductor: \(4608\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(384\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4608}(1355,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9216.cn

\(\chi_{9216}(23,\cdot)\) \(\chi_{9216}(119,\cdot)\) \(\chi_{9216}(167,\cdot)\) \(\chi_{9216}(263,\cdot)\) \(\chi_{9216}(311,\cdot)\) \(\chi_{9216}(407,\cdot)\) \(\chi_{9216}(455,\cdot)\) \(\chi_{9216}(551,\cdot)\) \(\chi_{9216}(599,\cdot)\) \(\chi_{9216}(695,\cdot)\) \(\chi_{9216}(743,\cdot)\) \(\chi_{9216}(839,\cdot)\) \(\chi_{9216}(887,\cdot)\) \(\chi_{9216}(983,\cdot)\) \(\chi_{9216}(1031,\cdot)\) \(\chi_{9216}(1127,\cdot)\) \(\chi_{9216}(1175,\cdot)\) \(\chi_{9216}(1271,\cdot)\) \(\chi_{9216}(1319,\cdot)\) \(\chi_{9216}(1415,\cdot)\) \(\chi_{9216}(1463,\cdot)\) \(\chi_{9216}(1559,\cdot)\) \(\chi_{9216}(1607,\cdot)\) \(\chi_{9216}(1703,\cdot)\) \(\chi_{9216}(1751,\cdot)\) \(\chi_{9216}(1847,\cdot)\) \(\chi_{9216}(1895,\cdot)\) \(\chi_{9216}(1991,\cdot)\) \(\chi_{9216}(2039,\cdot)\) \(\chi_{9216}(2135,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{384})$
Fixed field: Number field defined by a degree 384 polynomial (not computed)

Values on generators

\((8191,2053,4097)\) → \((-1,e\left(\frac{101}{128}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 9216 }(1031, a) \) \(1\)\(1\)\(e\left(\frac{367}{384}\right)\)\(e\left(\frac{43}{192}\right)\)\(e\left(\frac{155}{384}\right)\)\(e\left(\frac{97}{384}\right)\)\(e\left(\frac{19}{32}\right)\)\(e\left(\frac{83}{128}\right)\)\(e\left(\frac{137}{192}\right)\)\(e\left(\frac{175}{192}\right)\)\(e\left(\frac{341}{384}\right)\)\(e\left(\frac{23}{48}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9216 }(1031,a) \;\) at \(\;a = \) e.g. 2