sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(92)
sage: chi = H[13]
pari: [g,chi] = znchar(Mod(13,92))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 23 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 11 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 92.e |
Orbit index | = | 5 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{92}(9,\cdot)\) \(\chi_{92}(13,\cdot)\) \(\chi_{92}(25,\cdot)\) \(\chi_{92}(29,\cdot)\) \(\chi_{92}(41,\cdot)\) \(\chi_{92}(49,\cdot)\) \(\chi_{92}(73,\cdot)\) \(\chi_{92}(77,\cdot)\) \(\chi_{92}(81,\cdot)\) \(\chi_{92}(85,\cdot)\)
Inducing primitive character
Values on generators
\((47,5)\) → \((1,e\left(\frac{7}{11}\right))\)
Values
-1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
\(1\) | \(1\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{11})\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{92}(13,\cdot)) = \sum_{r\in \Z/92\Z} \chi_{92}(13,r) e\left(\frac{r}{46}\right) = 9.4773005285+1.4767446266i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{92}(13,\cdot),\chi_{92}(1,\cdot)) = \sum_{r\in \Z/92\Z} \chi_{92}(13,r) \chi_{92}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{92}(13,·))
= \sum_{r \in \Z/92\Z}
\chi_{92}(13,r) e\left(\frac{1 r + 2 r^{-1}}{92}\right)
= 0.0 \)