sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9075, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,44,81]))
pari:[g,chi] = znchar(Mod(6206,9075))
Modulus: | \(9075\) | |
Conductor: | \(9075\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{9075}(41,\cdot)\)
\(\chi_{9075}(431,\cdot)\)
\(\chi_{9075}(446,\cdot)\)
\(\chi_{9075}(866,\cdot)\)
\(\chi_{9075}(986,\cdot)\)
\(\chi_{9075}(1256,\cdot)\)
\(\chi_{9075}(1271,\cdot)\)
\(\chi_{9075}(1811,\cdot)\)
\(\chi_{9075}(2081,\cdot)\)
\(\chi_{9075}(2096,\cdot)\)
\(\chi_{9075}(2516,\cdot)\)
\(\chi_{9075}(2636,\cdot)\)
\(\chi_{9075}(2906,\cdot)\)
\(\chi_{9075}(2921,\cdot)\)
\(\chi_{9075}(3341,\cdot)\)
\(\chi_{9075}(3461,\cdot)\)
\(\chi_{9075}(3731,\cdot)\)
\(\chi_{9075}(3746,\cdot)\)
\(\chi_{9075}(4166,\cdot)\)
\(\chi_{9075}(4286,\cdot)\)
\(\chi_{9075}(4556,\cdot)\)
\(\chi_{9075}(4991,\cdot)\)
\(\chi_{9075}(5111,\cdot)\)
\(\chi_{9075}(5381,\cdot)\)
\(\chi_{9075}(5396,\cdot)\)
\(\chi_{9075}(5816,\cdot)\)
\(\chi_{9075}(5936,\cdot)\)
\(\chi_{9075}(6206,\cdot)\)
\(\chi_{9075}(6221,\cdot)\)
\(\chi_{9075}(6641,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3026,727,5326)\) → \((-1,e\left(\frac{2}{5}\right),e\left(\frac{81}{110}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) | \(23\) |
\( \chi_{ 9075 }(6206, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{49}{110}\right)\) |
sage:chi.jacobi_sum(n)