sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9075, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([110,99,174]))
pari:[g,chi] = znchar(Mod(62,9075))
Modulus: | \(9075\) | |
Conductor: | \(9075\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(220\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{9075}(17,\cdot)\)
\(\chi_{9075}(62,\cdot)\)
\(\chi_{9075}(83,\cdot)\)
\(\chi_{9075}(173,\cdot)\)
\(\chi_{9075}(497,\cdot)\)
\(\chi_{9075}(728,\cdot)\)
\(\chi_{9075}(788,\cdot)\)
\(\chi_{9075}(842,\cdot)\)
\(\chi_{9075}(908,\cdot)\)
\(\chi_{9075}(998,\cdot)\)
\(\chi_{9075}(1427,\cdot)\)
\(\chi_{9075}(1553,\cdot)\)
\(\chi_{9075}(1712,\cdot)\)
\(\chi_{9075}(1733,\cdot)\)
\(\chi_{9075}(1823,\cdot)\)
\(\chi_{9075}(2147,\cdot)\)
\(\chi_{9075}(2252,\cdot)\)
\(\chi_{9075}(2378,\cdot)\)
\(\chi_{9075}(2438,\cdot)\)
\(\chi_{9075}(2492,\cdot)\)
\(\chi_{9075}(2537,\cdot)\)
\(\chi_{9075}(2558,\cdot)\)
\(\chi_{9075}(2648,\cdot)\)
\(\chi_{9075}(2972,\cdot)\)
\(\chi_{9075}(3077,\cdot)\)
\(\chi_{9075}(3203,\cdot)\)
\(\chi_{9075}(3263,\cdot)\)
\(\chi_{9075}(3317,\cdot)\)
\(\chi_{9075}(3362,\cdot)\)
\(\chi_{9075}(3383,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3026,727,5326)\) → \((-1,e\left(\frac{9}{20}\right),e\left(\frac{87}{110}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) | \(23\) |
\( \chi_{ 9075 }(62, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{163}{220}\right)\) | \(e\left(\frac{53}{110}\right)\) | \(e\left(\frac{173}{220}\right)\) | \(e\left(\frac{49}{220}\right)\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{23}{220}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{179}{220}\right)\) |
sage:chi.jacobi_sum(n)