Properties

Label 9075.4891
Modulus $9075$
Conductor $3025$
Order $110$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,22,27]))
 
Copy content pari:[g,chi] = znchar(Mod(4891,9075))
 

Basic properties

Modulus: \(9075\)
Conductor: \(3025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3025}(1866,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9075.ej

\(\chi_{9075}(46,\cdot)\) \(\chi_{9075}(556,\cdot)\) \(\chi_{9075}(811,\cdot)\) \(\chi_{9075}(871,\cdot)\) \(\chi_{9075}(1381,\cdot)\) \(\chi_{9075}(1591,\cdot)\) \(\chi_{9075}(1636,\cdot)\) \(\chi_{9075}(1696,\cdot)\) \(\chi_{9075}(2206,\cdot)\) \(\chi_{9075}(2416,\cdot)\) \(\chi_{9075}(2461,\cdot)\) \(\chi_{9075}(2521,\cdot)\) \(\chi_{9075}(3031,\cdot)\) \(\chi_{9075}(3241,\cdot)\) \(\chi_{9075}(3286,\cdot)\) \(\chi_{9075}(3346,\cdot)\) \(\chi_{9075}(3856,\cdot)\) \(\chi_{9075}(4066,\cdot)\) \(\chi_{9075}(4171,\cdot)\) \(\chi_{9075}(4681,\cdot)\) \(\chi_{9075}(4891,\cdot)\) \(\chi_{9075}(4936,\cdot)\) \(\chi_{9075}(4996,\cdot)\) \(\chi_{9075}(5506,\cdot)\) \(\chi_{9075}(5716,\cdot)\) \(\chi_{9075}(5761,\cdot)\) \(\chi_{9075}(5821,\cdot)\) \(\chi_{9075}(6331,\cdot)\) \(\chi_{9075}(6541,\cdot)\) \(\chi_{9075}(6586,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3026,727,5326)\) → \((1,e\left(\frac{1}{5}\right),e\left(\frac{27}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 9075 }(4891, a) \) \(-1\)\(1\)\(e\left(\frac{49}{110}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{79}{110}\right)\)\(e\left(\frac{37}{110}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{9}{55}\right)\)\(e\left(\frac{43}{55}\right)\)\(e\left(\frac{69}{110}\right)\)\(e\left(\frac{107}{110}\right)\)\(e\left(\frac{21}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9075 }(4891,a) \;\) at \(\;a = \) e.g. 2