Properties

Label 9075.4
Modulus $9075$
Conductor $3025$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,11,2]))
 
Copy content pari:[g,chi] = znchar(Mod(4,9075))
 

Basic properties

Modulus: \(9075\)
Conductor: \(3025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3025}(4,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9075.eh

\(\chi_{9075}(4,\cdot)\) \(\chi_{9075}(64,\cdot)\) \(\chi_{9075}(619,\cdot)\) \(\chi_{9075}(709,\cdot)\) \(\chi_{9075}(829,\cdot)\) \(\chi_{9075}(889,\cdot)\) \(\chi_{9075}(1444,\cdot)\) \(\chi_{9075}(1534,\cdot)\) \(\chi_{9075}(1714,\cdot)\) \(\chi_{9075}(2269,\cdot)\) \(\chi_{9075}(2359,\cdot)\) \(\chi_{9075}(2479,\cdot)\) \(\chi_{9075}(2539,\cdot)\) \(\chi_{9075}(3094,\cdot)\) \(\chi_{9075}(3184,\cdot)\) \(\chi_{9075}(3304,\cdot)\) \(\chi_{9075}(3364,\cdot)\) \(\chi_{9075}(3919,\cdot)\) \(\chi_{9075}(4009,\cdot)\) \(\chi_{9075}(4129,\cdot)\) \(\chi_{9075}(4189,\cdot)\) \(\chi_{9075}(4744,\cdot)\) \(\chi_{9075}(4834,\cdot)\) \(\chi_{9075}(4954,\cdot)\) \(\chi_{9075}(5014,\cdot)\) \(\chi_{9075}(5659,\cdot)\) \(\chi_{9075}(5779,\cdot)\) \(\chi_{9075}(5839,\cdot)\) \(\chi_{9075}(6394,\cdot)\) \(\chi_{9075}(6484,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3026,727,5326)\) → \((1,e\left(\frac{1}{10}\right),e\left(\frac{1}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 9075 }(4, a) \) \(1\)\(1\)\(e\left(\frac{13}{110}\right)\)\(e\left(\frac{13}{55}\right)\)\(e\left(\frac{69}{110}\right)\)\(e\left(\frac{39}{110}\right)\)\(e\left(\frac{81}{110}\right)\)\(e\left(\frac{41}{55}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{21}{110}\right)\)\(e\left(\frac{17}{55}\right)\)\(e\left(\frac{41}{110}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9075 }(4,a) \;\) at \(\;a = \) e.g. 2