Properties

Label 9075.31
Modulus $9075$
Conductor $3025$
Order $55$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9075, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,44,86]))
 
Copy content pari:[g,chi] = znchar(Mod(31,9075))
 

Basic properties

Modulus: \(9075\)
Conductor: \(3025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(55\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3025}(31,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9075.ds

\(\chi_{9075}(31,\cdot)\) \(\chi_{9075}(91,\cdot)\) \(\chi_{9075}(136,\cdot)\) \(\chi_{9075}(346,\cdot)\) \(\chi_{9075}(916,\cdot)\) \(\chi_{9075}(961,\cdot)\) \(\chi_{9075}(1171,\cdot)\) \(\chi_{9075}(1681,\cdot)\) \(\chi_{9075}(1741,\cdot)\) \(\chi_{9075}(1786,\cdot)\) \(\chi_{9075}(1996,\cdot)\) \(\chi_{9075}(2506,\cdot)\) \(\chi_{9075}(2566,\cdot)\) \(\chi_{9075}(2611,\cdot)\) \(\chi_{9075}(2821,\cdot)\) \(\chi_{9075}(3331,\cdot)\) \(\chi_{9075}(3436,\cdot)\) \(\chi_{9075}(3646,\cdot)\) \(\chi_{9075}(4156,\cdot)\) \(\chi_{9075}(4216,\cdot)\) \(\chi_{9075}(4261,\cdot)\) \(\chi_{9075}(4471,\cdot)\) \(\chi_{9075}(4981,\cdot)\) \(\chi_{9075}(5041,\cdot)\) \(\chi_{9075}(5086,\cdot)\) \(\chi_{9075}(5296,\cdot)\) \(\chi_{9075}(5806,\cdot)\) \(\chi_{9075}(5866,\cdot)\) \(\chi_{9075}(5911,\cdot)\) \(\chi_{9075}(6121,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

\((3026,727,5326)\) → \((1,e\left(\frac{2}{5}\right),e\left(\frac{43}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 9075 }(31, a) \) \(1\)\(1\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{31}{55}\right)\)\(e\left(\frac{36}{55}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{28}{55}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{7}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 9075 }(31,a) \;\) at \(\;a = \) e.g. 2